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Abstract

This report investigates the validity of several key assumptions in classical plasticity theory re-
garding material response to changes in the loading direction. Three metals, two rock types, and
one ceramic were subjected to non-standard loading directions, and the resulting strain response
increments were displayed in Gudehus diagrams to illustrate the approximation error of classical
plasticity theories. A rigorous mathematical framework for fitting classical theories to the data,
thus quantifying the error, is provided. Further data analysis techniques are presented that allow
testing for the effect of changes in loading direction without having to use a new sample and for
inferring the yield normal and flow directions without having to measure the yield surface. Though
the data are inconclusive, there is indication that classical, incrementally linear, plasticity theory
may be inadequate over a certain range of loading directions. This range of loading directions also
coincides with loading directions that are known to producea physically inadmissible instability
for any nonassociative plasticity model.
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Chapter 1

Introduction

Predicting inelastic material response is key in several active Sandia mission areas including pen-
etration and impact, vulnerability assessment, hydrocarbon reservoir and porous media. Essential
to these predictions is the use of generalized plasticity and damage models. Many problems of
practical importance induce significant changes in the loading directions. For example, in a pene-
tration problem, the material near the impact point first experiences a nearly uniaxial strain loading
upon passage of the initial shock wave, but then the stress state transitions toward simple shear as
the penetrator itself passes. Virtually every plasticity model at Sandia (and elsewhere) relies on
unvalidated theories for predicting material response to changes in loading direction. However,
laboratory testing for parameterizing engineering plasticity models is typically limited to unidi-
rectional axisymmetric compression, thus forcing guesswork in the development of constitutive
models to predict material response for deviations from calibration test load directions. This un-
certainty in the physical foundations of the governing equations must be eliminated via systematic
validation experiments. Without such validation, much doubt is cast on the results of any simula-
tion that uses a model to simulate load paths that significantly deviate from the load paths used in
calibration testing. For example, rocks and rock-like materials often exhibit non-associativity of
the plastic flow direction when they are loaded in triaxial compression. Under classical plasticity
theory, the non-associative flow direction observed in thisone calibration loading direction (triax-
ial compression) is then assumed – without proof – to apply toall loading directions. Suppose,
however, that (contrary to classical plasticity theory) the flow direction should actually vary with
the loading direction. How much error can be expected by neglecting the variation? To illustrate
sensitivity of simulation results to modeling uncertaintyin the flow direction, Fig. 1.1 shows a
verification problem that was part of an ACTD inter-agency V&V study. For prescribed Mohr-
Coulomb parameters, this problem prescribes a highly variable strain path for which the analytical
solution is known be the plane stress response shown by the thick orange line in Fig. 1.1. The
dashed lines in that figure show that a small (2◦) change in the flow directionM produces a large
(˜10%) change in the stress response – even inducing significant deviation from plane stress. This
sensitivity study suggests that large validation errors under general loading can be expected if the
classical assumption of a path-insensitive flow direction is even slightly inappropriate.

“Engineering plasticity models” are here defined to be thosethat are simple enough in their
structure, efficiency, and robustness to be practical for large scale engineering applications. To date,
this means that engineering plasticity models are usually phenomenological and, for tractability,
often include simplifying assumptions (such as isotropy) that have not been well justified in the
laboratory. More complicated approaches might apply first-principles materials science [1] or
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Figure 1.1. Results of ACTD Mohr-Coulomb Verification Study

atomistic modeling [2] or mesoscale modeling [3] to explicitly account for microstructural aspects
such as grain boundary effects on dislocations, crack and inclusion distributions obtained from
tomography, etc. [4]. However, even the advanced theories are not exempt from validation, since
they also rely on numerous unproven assumptions. Although the computational overhead of these
more sophisticated theories often precludes their direct use in engineering applications, they still
serve as valuable resources for improving predictions of engineering plasticity theories in domains
for which experimental data are not available.

This report describes systematic laboratory investigations of the validity of some fundamental
assumptions that are common to virtually every engineeringplasticity model. Of particular interest
is a need to determine material behavior for a particular loading direction that is known to theo-
retically admit a physically inadmissible instability if the material is modeled usinganyclassical,
non-associative, rate-independent, engineering plasticity theory. As discussed in detail later, the
unstable range of loading directions forms a “wedge” in stress space (above yield but below the
flow surface) that is located far away from the probing direction used in standard parameterization
testing. Therefore, the primary goal of our laboratory investigation is to probe material response
in or near this wedge. More broadly, the goals are (1) to design inexpensive methods for exploring
the effect of a variety of non-standard loading directions and (2) to develop means of analyzing the
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data without introducing unnecessary constitutive assumptions.

Non-standard loading is also needed to investigate a prediction of some plasticity models for
rocks and ceramics that dilatate in compression (attributed to opening of microcracks in shear)
actually strengthens the material in hydrostatic compression. This result seems to contradict the
commonly held view that an increase in void space should decrease the hydrostatic elastic limit
pressure. The concern is that efforts to reproduce a very limited data set (shear-enhanced dilatation)
might have resulted in a model that gives very poor predictions for changes in loading direction
from that state. This is just one example of a more broad observation that engineering plastic-
ity models are typically designed to match unidirectional model parameterization tests, yet such
models repeatedly are non-predictive in more complicated validation tests that usually involve far
more complicated changes in loading. Clearly, laboratory testing for plasticity models needs to be
expanded to include a greater variety of loading directions, beyond the minimum needed to merely
parameterize the models.

Relative to simplistic plasticity models such as von Mises or Tresca theory, the somewhat more
realistic engineering plasticity models such as Johnson-Cook theory [5] and the Sandia GeoModel
[6], allow many more factors to alter the material response.In such models (as well as in simpler
models), the stress rate (σ̇ ) is assumed to be a function of the strain rate (ε̇), current state of stress
(σ ), and a set of internal state variables (η1,η2, ...) that characterize the internal structure of the
material. The internal variables are themselvesfunctionalsof the loading history, giving rise to
path dependence. Setting aside the details of any particular model, engineering plasticity theories
are typically written in the following basic incremental form:

σ̇ = H (ε̇,σ ,η1,η2, ...). (1.1)

Here, a superimposed dot may be regarded as an increment or time rate (where, for rate-independent
plasticity “time” is any monotonically increasing scalar parameterizing the deformation path). In
laboratory work, it is often presumed that the roles of stress and strain can be reversed in Eq. (1.1)
so that the stress increment is the controlled independent variable, while the strain increment is
the measured dependent variable. Such a view will be adoptedin our experimental investigations.
Most plasticity theories assume that there exists a scalar-valued yield function (f ) such that elastic
deformation occurs when

f (σ ,η1,η2...) < 0. (1.2)

For isotropic plasticity models, the zeros of this functionare often plotted as an isosurface
(called the yield surface) in three-dimensional principalstress space, as illustrated in Fig. (1.2).

This yield function is used to determine if elasticity theory or plasticity theory is used to de-
scribe a given deformation. This is done as follows:
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Figure 1.2. Common isotropic yield surfaces. Von Mises and
Drucker-Prager models are often used for metals. Gurson’s func-
tion, and others like it, are used for porous media. Tresca and
Mohr-Coulomb models approximate the yield threshold for brittle
media. Fossum’s model, and others like it, combine these features
to model realistic geological media.

f = 0, ∂ f
∂σi j

Ci jkl ε̇kl > 0 Plastic

f = 0, ∂ f
∂σi j

Ci jkl ε̇kl = 0 Neutral

f = 0, ∂ f
∂σi j

Ci jkl ε̇kl < 0 Elastic

f < 0 Elastic

(1.3)

whereCi jkl are the components of the fourth-order elastic tangent stiffness tensor. It is noted
that for the neutral case, plasticity theory and elasticitytheory will give the same result. Our
experimental data for the effect of loading changes will be examined in this very broad context
that makes no reference to any particular engineering plasticity model.

Several other assumptions that are common in engineering plasticity will not be adopted in
this work. For example, the vast majority of (commonly used)engineering plasticity models pre-
sume material isotropy. While isotropy might be a reasonable assumption for the virgin material,
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it is not defensible under general deformation even in the elastic regime. Neglect of elastically
induced anisotropy generally violates thermodynamics [7], which is a prediction that itself merits
experimental investigation to support model revisions forelastically induced anisotropy, or else
risk improper parameterization of dissipation in the plastic part of the model to compensate for
errors in the elastic part. Of course, induced anisotropy isexpected to be even more pronounced
under plastic loading, as is well known from the metal rolling industry [8, 9]. Constitutive mod-
elers are forced to assume persistent isotropy for several reasons: (1)lack of data (2) lack of time
or resources needed to develop solvable anisotropic governing equations, and (3) lack of compu-
tational resources needed to solve the larger, more complicated, set of equations. Additionally,
many host codes are not prepared to handle anisotropic constitutive models. Once, for example,
we found that the host code’s treatment of transmitting (outflow) boundary conditions implicitly
assumed material isotropy and was unstable (crashed withintwo time steps) as soon as a simple
transversely isotropic material began to deform at the boundary. Also, the critical timestep built
into explicit time integrators is usually based on the assumption that there are only two elastic
constants (shear and bulk modulus), which is not correct foranisotropic models.

Our experimental investigation will address the first need by quantifying the extent of both
elastic and plastic induced anisotropy. The data will show that the very framework of classical
plasticity is incomplete. However, the data analysis will include error-minimizing methods for
projecting the observed material response into the framework of classical isotropic engineering
plasticity theory. The magnitude of the residual in such an analysis is then a quantitative measure
of the approximation error associated with the use of classical engineering plasticity models.

Even experimental work must necessarily introduce assumptions, but those assumptions should
be validated in the experiments whenever it is possible to doso. For tractability, our labora-
tory investigations will involve purely axisymmetric loading, and it will be assumed that the ma-
terial is initially either isotropic or transversely isotropic so that we may also assume induced
anisotropy is, at worst, transversely isotropic. Naturally, redundant gaging is used to assess valid-
ity of this assumption during testing. Under general loading, where stress and strain tensors are
six-dimensional because they have six independent components, comprehensive validation testing
of a classical plasticity theory would require measuring 36continually evolving tangent stiffness
variables, which is well beyond the scope of any laboratory effort to date. Axisymmetric loading,
on the other hand, involves two-dimensional representations of stress and strain (each constructing
the 6D tensors from two numbers: axial and lateral components), thus reducing the number of
tangent stiffnesses to be measured in the laboratory down toonly four. Importantly, to quantify
the error associated with assumptions in classical engineering plasticity theory, our data reduction
allows for the possibility of “incrementally nonlinear response”, for which a tangent tensor does
not even exist in the classical sense. The definition of incremental nonlinearity, along with the
mathematics of the dimensional reduction from 6D to 2D tensors and methods for quantifying
error associated with classical plasticity theory are discussed in the next chapter, after which the
experimental techniques and results are discussed.
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Chapter 2

Terminology and Mathematics

The basic function of a constitutive material model is to quantify evolving relationships between
stress (σ ), strain (ε), and other variables that characterize the material state. Simple constitutive
models characterize the material state by very few variables. For example, an elastic model pre-
sumes that the stress tensor depends only the strain tensor:

σ = F (ε) (2.1)

Even in this case of elasticity, laboratory data are sometimes erroneously analyzed under an un-
necessary assumption of linearity that reduces Eq. (2.1) to

σi j = Ci jkl εkl (2.2)

whereCi jkl are the components of the fourth-order elastic stiffness tensor. 1 For tractability, data
might even be analyzed under the assumption that an elastic model is not only linear, but also that
the stiffness is isotropic, making Eq. (2.2) reduce even further to

Si j = 2Gγi j and p = Kεv (2.3)

whereSi j are the components of the stress deviator,γi j are the components of the strain deviator,p
is the pressure,εv is the volumetric strain,K is the bulk modulus, andG is the shear modulus. An
aim of the current work is to avoid these and similarly unneeded constitutive assumptions in the
analysis of the data.

Of course, for realistic materials, an assumption of linearity of elastic response is not usually
adopted. If the functionF in Eq. (2.1) is nonlinear inε, then its rate form is

σ̇i j = Ci jkl ε̇kl (2.4)

where

Ci jkl =
∂σi j

∂εkl
(2.5)

1All indices range from 1 to 3, and repeated subscripts indicate summations from 1 to 3.
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The fourth-order tensorCi jkl is the local tangent to the nonlinear function relating stress to strain. If
the tangent tensor is constant, then this result reduces to the linear form in Eq. 2.2. Otherwise, the
tangent stiffness tensor is a function of strain (equivalently, the tangent tensor can be alternatively
written as a function of stress if the elastic relationship between stress and strain is invertible to
express strain as a function of stress).

An assumption of elasticity (i.e., that stress is a differentiable function of strain) ensures not
only the existence of the tangent stiffness, but it also guarantees that the tangent stiffness isinde-
pendent of the strain rateeven though it varies with the strain. Stated mathematically,

σ = σ(ε) ⇒ There exists a tensorC such thatσ̇i j = Ci jkl ε̇kl (2.6)

As is well known from the theory of exact differentials, however, the converse is false. For the
converse to be true, the right-hand side of Eq. (2.6) must be supplemented with the additional
statement thatC depends only onε (not on ε̇ or anything else) and, moreover, the equation on
the right-hand side must be integrable, which requiresdCi jkl /dεrs = dCi jrs/dεkl. These additional
requirements are extremely difficult to detect from experimental data. Specifically, suppose that it
is observed that a fourth-order tensorY exists such that

σ̇i j = Yi jkl ε̇kl (2.7)

Does this imply thatY is the same asC in Eq. (2.4)? No, it might be that this tensorY depends
on more than just the strain. Even ifY depends only on strain, Eq. (2.7) might not be integrable
for stress as a function of strain. In laboratory work, whereonly stress and strain increments are
measured, it might be possible to find the components ofY, but it is impossible to know with
certainty the variables on whichY depends under general loading. Suppose thatY seems to depend
on any number of “unknowable other variables,” but suppose that it is also known (or assumed) that
Y is independent of the strain rate. Then the relationship in Eq. (2.7) is “incrementally linear.” On
the other hand, if theY tensor might possibly depend on the strain rate itself, thenthe relationship
between stress and strain (and any number of other state variables) is “incrementally nonlinear.” In
the simpler case of a scalar (one-dimensional) stress-strain relationship, incremental nonlinearity
simply implies that the local slope is discontinuous so thatone slope applies to loading (ε̇ > 0) and
a different slope applies to unloading (ε̇ < 0). Whereas in the one-dimensional case, there are only
two possible loading directions (forward or backward), in the two or three-dimensional case there
are an infinite number of possible loading directions.

A goal of this project is to minimize constitutive assumptions in data analysis in order to assess
validity of constitutive assumptions commonly made in engineering plasticity theories. Specifi-
cally, in plasticity theory the stress rate is presumed to beexpressible in the form

σ̇i j =

{

Ci jkl ε̇kl during elastic loading
Ti jkl ε̇kl during plastic loading

(2.8)
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whereC is called the elastic tangent stiffness, andT is the plastic tangent stiffness. This statement
of the basic structure of plasticity equations can be written in the form of Eq. (2.7) by taking

Yi jkl =

{

Ci jkl during elastic loading
Ti jkl during plastic loading

(2.9)

In classical rate-independent plasticity, neitherC norT depends on the strain rate, but as discussed
above the determination of whether or not loading is elasticor plastic does depend on the strain rate
according to Eq. (1.3). Therefore, even classical plasticity is incrementally nonlinear in the strictest
sense. However, classical plasticity theory is generally nevertheless referred to as incrementally
linear because it ispiecewiseincrementally linear.

The laboratory investigations for this research seek to determine whether or not even the most
basic form of classical plasticity (piecewise incrementallinearity) is a valid approximation. To be
consistent with an assumption of rate independence, the experimental investigations are limited
to very slow loading rates with hold periods between elasticunloading cycles. (Even with hold
periods, some creep is recognized in the upcoming data, but means for quantifying the error of an
assumption of rate independence in classical plasticity theory will not be addressed in this work.)

Regular Flow Rule

The vast majority of engineering plasticity models not onlyassume that the strain rate can be
decomposed into elastic and plastic parts,

ε̇ = ε̇e+ ε̇ p, (2.10)

but they also invariably adopt a“regular flow rule” , which presumes that only themagnitudeof
the plastic strain ratėε p depends on the total strain rateε̇, whereas thedirectionof the plastic strain
rate is determined purely from the material state, not from the rate of change of state.

The direction of a tensorA is defined by a tensor of unit magnitudeÂ just as with a vector:

Âi j =
Ai j

√

AmnAmn
(2.11)

where the term in the denominator is the magnitude of the tensor A. Of course, any tensor can be
decomposed multiplicatively into its magnitude times a unit tensor in its direction. When applied
to the plastic strain rate, this decomposition is

ε̇ p
i j = λ̇Mi j where λ̇ =

√

ε̇ p
i j ε̇

p
i j Mi j = ε̇ p

i j /λ̇ (2.12)
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An ability to express the plastic strain rate in this form does not imply a regular flow rule. To be
a regular flow rule, the tensorM must be independent of the total strain rate. A regular flow rule
states that the direction of the plastic strain rate tensorε̇ p is independent of the direction of the
total strain ratėε. If in addition to a regular flow rule, it is also assumed that material response is
rate independent, then it can be shown that equation (1.1) becomes linear iṅε. Namely,

H (ε̇,σ ,η1,η2, ...) = Ti jkl (σ ,η1,η2...)ε̇kl (2.13)

whereTi jkl is the fourth-orderplastic tangent stiffness tensor. When written without explicitly
showing dependencies, this becomes simply

σ̇i j = Ti jkl ε̇kl (2.14)

Just as with the elasticity equations, such a formulation greatly simplifies the implementation
of the material model as compared to equation (1.1) because it leads to a linear system which is
solvable for increments in all variables. Each variable is then integrated through time to update
the material state at each time step. Although most plasticity models rely on this assumption, very
little work has been done to assess its validity.

Dimensional reduction for axisymmetric loading

As mentioned in the introduction, the scope of our laboratory investigation is limited to axisym-
metic loading of a material that is, at most, transversely isotropic. Then it may be reasonably
presumed (and verified through redundant gaging) that any second-order tensor in the analysis
may be written in the form

[A] =





AA 0 0
0 AL 0
0 0 AL



 (2.15)

where the subscripts “A” and “L” refer to axial and lateral components. This may be written as a
linear combination ofunit base tensors as





AA 0 0
0 AL 0
0 0 AL



 = (AA)





1 0 0
0 0 0
0 0 0



+
(√

2AL

) 1√
2





0 0 0
0 1 0
0 0 1



 (2.16)

The normalization of the base tensors allows reducing the generally 6-dimensional entity (a fully-
populated symmetric tensor [A]) to a simple two-dimensional vector having componentsAA and√

2AL. The introduction of the
√

2 ensures that the ordinary magnitude of thevector,

[

AL√
2AL

]

, (2.17)
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is the same as the magnitude of the tensor. For this reason, the two values (AA and
√

2AL) are said
to be isomorphic to stress space. They are Euclidean coordinates within a two-dimensional plane
that “cuts through” six-dimensional tensor space. With this reduction in dimension, Eq. (2.14) then
reduces to simply

[

σ̇A

σ̇L

]

=

[

TAA TAL

TLA TLL

][

ε̇A

ε̇L

]

(2.18)

Whereas the above decomposition into axial and lateral components is most natural for the lab-
oratory control, data analysis that aims to draw connections with conventional plasticity theories
is better served by introducing a change of variables. For any axisymmetric tensor [A] defined by
its isomorphic components (AA and

√
2AL), an alternative pair of isomorphic components, corre-

sponding to an orthogonal basis rotation in the same two-dimensional space, is given by

[

Az

Ar

]

=
1√
3

[

1
√

2√
2 1

][

AA√
2AL

]

(2.19)

With this change of variables, Eq. (2.16) can be written as anequivalent expansion in terms of a
different pair of unit base tensors as





AA 0 0
0 AL 0
0 0 AL



 = (Az)
1√
3





1 0 0
0 1 0
0 0 1



+(Ar)
1√
6





2 0 0
0 −1 0
0 0 −1



 (2.20)

which illustrates that these two alternative coordinates decompose axisymmetric tensors into their
isotropic and deviatoric parts.

These alternative axisymmetric measures are subscripted “r” and “z” because they can be
shown to correspond to the cylindrical coordinates that arenaturally implied in the symmetries
of Fig. 1.2. For axisymmetric loading the angular coordinate, called the Lode angle, is fixed on the
compressive meridian. Therefore, becausez-r Lode coordinates are isomorphic to stress space, our
upcoming plots inz-r stress space aregeometricallyaccurate (same lengths and angles) depictions
of a “side view” of the yield surfaces in Fig. 1.2. It is this feature, as well as inheritance of tensor
properties, such as symmetries and eigensystems of the tangent tensor, that recommends isomor-
phic tensor measures over perhaps more (initially) intuitive or familiar coordinate pairs. The Lode
axial coordinateσz is the hydrostatic component of the stress, and it is relatedto pressurep by
σz =

√
3p. The Lode radiusσr is a measure of equivalent shear stress, and it is related to the

conventional measure of shear stress,q, by σr = q
√

3/2. Thus, not only may a plot ofσr vs. σz

be regarded as a “side view” of an isotropic yield surface, such a plot may be also seen as loosely
depicting shear strength vs. pressure, with the only difference being constant scaling of the axes.
The Lode coordinates represent decomposition of the tensorinto isotropic and deviatoric parts,
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which reveals structure in simple idealized solid mechanics theories. For example, with the Lode
measures for axisymmetric problems, the isotropic Hooke’sLaw of Eq. (2.3) becomes simply

[

σ̇z

σ̇r

]

=

[

3K 0
0 2G

][

ε̇z

ε̇r

]

(2.21)

Of course, the general form for incremental plasticity becomes

[

σ̇z

σ̇r

]

=

[

Tzz Tzr

Trz Trr

][

ε̇z

ε̇r

]

(2.22)

For simplicity, we may write this in a more compact notation as simplyσ̇ = T ε̇, where it must be
understood from context thatσ̇ andε̇ are 2x1 vectors, whileT is a 2x2 matrix.

Our analysis of laboratory data willnot presume that a classical (incrementally linear) plastic
tangent stiffness tensor even exists. Suppose that incremental nonlinearity is observed in the data,
but only incrementally linear plasticity models are available in our finite element codes. Then a
short-term workaround is needed while awaiting model enhancements to be delivered by the consti-
tutive modelers, which could take many years since there arefew validated models for incremental
nonlinearity. Arational strategy for interim use of existing classical plasticity models would set
the incrementally linear parameters to values that minimize error with observed incrementally non-
linear data. In analogous problems involving scalars (instead of tensors), the rational approach is
to use a least squares fit to nonlinear data until a nonlinear model is available. In our more general
case for which the data consists of a collection of stimulusvectorsand their corresponding response
vectors, an unweighted least squares best linear fit to the data is obtained as follows: (1)place the
stimulus vectors into columns of a matrix[S], (2)place the corresponding response vectors into
columns of a matrix[R], and (3)evaluate the best fit linear transformation matrix[L] = [R][S](−1),
where the superscript “(-1)” denotes the pseudo-inverse (available in most numerical linear algebra
packages, and required in data analysis because[S] is generally non-square). The pseudoinverse is
an ordinary inverse if there are exactly the same number of linearly independent stimulus vectors
as the dimension of the space. The residual error of the approximation is quantified by the norm
of [R]− [L][S]. Of course, aweightedlinear regression may be used if greater accuracy for par-
ticular loading directions is desired. Incidentally, the experiments described in this report are all
stress controlled. Therefore, the “stimulus” matrix[S] holds the stress increment vectors, and the
“response” matrix[R] holds the measured strain increment vectors (interpolatedto the current ma-
terial state, as described later). Therefore, the[L] matrix computed in our data analysis is actually
the tangentcompliance, [L] = [T]−1.

Visualization of linear transformations

As mentioned in the previous section, analysis of out laboratory experiments will make no as-
sumptions that the material is incrementally linear or evenisotropic. We will simply plot the strain
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increment (response) vectors resulting from stress increment (stimulus) vectors that are in various
directions, but each of equal length. Because the stimulus vectors are all of equal length, plotting
them joined at the tails produces a set of vectors whose tips form a circle, as illustrated in Fig. 2.1.
Doing the same type of tail-to-tail plot for the response vectors allows direct visualization of the
degree to which the transformation from stress increments to strain increments is linear. A neces-
sary condition for a transformation to be linear is that the response envelope must form an ellipse,
as in 2.1(b). This is not a sufficient condition, as seen in Fig. 2.1(d); a linear transform has the ap-
pearance of a uniform stretching of the stimulus disk, possibly in combination with some rotation.
An example of a more “ordinary” nonlinear transformation isshown in Fig. 2.1(c).

Incidentally, the plots in Fig. 2.1 are superior to Reynoldsglyphs [10] because a Reynolds glyph
fails to convey information about rotation and, as mentioned, it does not depict irregular vector
distributions on the ellipse (or ellipsoid in 3D). Reynoldsglyphs for stress-strain transformations
are often referred to as “Gudehus” diagrams [11].

Figure 2.1. Visualization of vector transformations.
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Data interpolation to a single state

For stress-controlled axisymmetric loading, inferring anincremental relationship between stress
and strain requires aminimumof two stress (stimulus) increments and the corresponding mea-
sured strain (response) increments. Far more than two stimulus (stress increment) directions are
required to detect incremental nonlinearity. Importantly, the relationship between stress and strain
increments is amaterial state function– it represents how the material would respond to any given
stimulusat the current state. However, this state function is also anevolvingstate function, which
means the act of measuring material response to any one stimulus will generally irreversibly change
the material, making it impossible to know with certainty how the materialwouldhave responded
to some other stimulus. Let it be emphasized that identical material states mean identical materi-
als, under identical stress states, and identical loading histories. In practice such a measurement
is impossible because the act of inelastically deforming the material to measure the response for
the first stimulus irreversibly changes the material, making it impossible to know with certainty
what the material responsewould have beenif the material had been instead loaded in a different
direction. To answer that question, one would have to be ableto manufacture anidenticalsample
and load it through anidenticalpath underidenticalambient conditions in order to measure the
response to any new stimulus. Obviously, attaining identical conditions for a second measurement
is impossible from a practical standpoint as well because ofvariability in samples and loading
procedures.

Two methods have been used to overcome these difficulties. The most common method used
to assess the validity of a regular flow rule is through the useof discrete element method (DEM)
simulations or other computational schemes. The advantageof this method is that it is a simple
matter to create identical material states in a computer simulation. Several simulations may be
performed with the same initial conditions and different loading directions. One such study by
Tamagnini [12] compared such “stress probe” DEM simulations with various constitutive models.
These simulations were meant to model a soil specimen. The “specimen” geometry used was
a cube of material whose faces were aligned with the principal stress/strain directions. These
simulations were performed by loading the material througha prescribed axisymmetric loading
path as shown in Fig. (2.2). The loading path consisted of hydrostatic compression to 100 kPa,
then triaxial compression until the deviatoric stress reached 300 kPa, then unloading along the
same path until the deviatoric stress was 100 kPa. Two pointsalong the path were selected as
reference states for stress probing. The first pointB was on the triaxial loading path when the
deviatoric stress was 100 kPa. The second pointB′ was at the same stress state, only on the
unloading portion of the path.

Beginning at these two reference states, small stress increments (probes) were applied in several
directions. For each loading direction the simulation was performed once with energy dissipation
mechanisms active, and once with no energy dissipation allowed. The particle displacements with
the energy dissipation mechanisms active were used to calculate the total strain increment, while
the displacements that occurred when no energy dissipationwas allowed were used to calculate
the elastic strain increments. The stress probe directionswere constrained to the axisymmetric
plane (̇σx = σ̇y) and the deviatoric plane (σ̇x + σ̇y+ σ̇z = 0). Stated differently, the first set of tests,
like ours, held the Lode angle constant. Unlike ours, the second set of tests held the pressure (or,
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Figure 2.2. Triaxial compression load path used in DEM sim-
ulations performed by Tamagnini. Hereq is the equivalent shear
stress, andp is the mean stress. Alsoεz is the strain in the z(axial)-
direction, andεv is the volumetric strain. The points at which stress
probes were applied are labeledB andB′. (Courtesy of C. Tam-
agnini)

equivalently, thezLode coordinate) fixed, which corresponds to an octahedral plane orthogonal to
the meridional plane used in the first set of tests.

The results of this study are displayed using incremental strain response envelopes. These
envelopes represent the unit circle in stress space ( as in Fig. (2.3)) mapped to strain space. They
provide a convenient way of visualizing material response.Figure (2.3) illustrates the response
in the axisymmetric plane while at the virgin state that is labeled B in Fig. (2.2). Notice that the
plastic strain response envelope is a single line. This means that the direction of plastic strain is
independent of loading direction, indicating a regular flowrule. In other words no matter what
stress increment is applied, the direction ofε̇ p is fixed (only its magnitude depends on the stress
increment). Applying the same stress probes at the stateB′ on the unloading leg produced the
strain response envelope shown in Fig. (2.4). This strain envelope looks much like the one from
virgin state B, except that plastic strain increments were observed in the unloading directions as
well as loading directions. Classical plasticity theory would predict an entirely elastic response
at this point since it lies within the now expanded yield surface. Aside from this disagreement
with classical plasticity theory, these probes seem to suggest that a regular flow rule is in fact a
valid assumption. However, the results from the stress probes in the deviatoric plane are quite
different. Figure (2.5) illustrates the strain response envelope at virgin state B for stress probes in
the deviatoric plane.

25



Figure 2.3. Results of Tamagnini’s DEM stress probe simula-
tions. A set of axisymmetric stress increments representedby a
unit circle in stress space (left), and the resulting strainincrements
mapped to strain space (right).

The strain response envelope at material stateB′ was similar to that at state B. The strain
response envelope shows that the direction of plastic strain has a strong dependence on the loading
direction. This indicates an irregular flow rule. Other studies [13, 14] have had similar results.
The major drawback to these DEM simulations is that the simulations themselves rely on many
unvalidated assumptions.

Another method that has been used to study the validity of a regular flow rule is to perform
stress probing experiments in the laboratory. One such study [15] fabricated a set of nominally
identical samples composed of sand. Just as with the DEM study, each sample was loaded though
a specified axisymmetric loading path to a particular point in stress space. After reaching the
desired stress state, a small stress increment was applied,then reversed. The strain that remained
after the unloading was assumed to be the plastic strain increment. This process was repeated
with stress increments in a variety of directions, using a different sample each time. Since these
tests were performed in a triaxial compression fixture, all loading increments were constrained
to the axisymmetric meridian. For stress states near failure, a regular flow rule was observed.
However, for stress states near the hydrostat, the direction of the plastic strain increment depended
strongly on the loading direction. The author was quick to point out that because of the small strain
increments for probes near the hydrostat the experimental error was also greater in this region.
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Figure 2.4. Strain response envelope for axisymmetric stress
probes at stress state B’ from Tamagnini’s DEM simulations.
(Courtesy of C. Tamagnini)

Another study by Royis [16] had similar findings. While this type of testing has yielded some
very interesting and valuable results, the results depend on the fabrication of “identical” samples.
The methods they used were specific to soil specimens, and could not easily be extended to other
engineering materials.

These previous studies cast some doubt on the validity of a regular flow rule. Below, we
propose an alternative method for studying the validity of aregular flow rule which may be more
straightforward than the methods discussed above. The proposed new approach is premised on
certain interpolation assumptions that will rely on these previous studies for validation. After
discussing additional assumptions, the details of this method will be explained.

Non-Associated Flow Rule

Accepting the assumption of a regular flow rule requires the direction of the plastic strain rate to be
defined for all states of stress where inelastic deformationis possible. Here we will assume that the
yield function is differentiable, and therefore the yield surface has no vertices. This assumption is
adopted not because it is necessarily true, but because the goal of this study is to determine whether
or not models that make this assumption are capable of being fit to the data.
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Figure 2.5. Results of Tamagnini’s DEM stress probe simula-
tions. A set of deviatoric stress increments represented bya unit
circle in stress space (left), and the resulting strain increments
mapped to strain space (right). (Courtesy of C. Tamagnini)

Drucker [17, 18] investigated the requirements that stability placed upon the direction of the
plastic strain rate. The analysis begins with a unit volume of material in which there is a homo-
geneous state of stress and strain. An external agency then applies a stress increment which loads
the material in such a way that the stress state lies on the yield surface. The external agency then
applies a small stress increment directed outward from the yield surface. The external agency then
releases the small stress increment, and returns the stressstate to the initial state. Drucker asserted
that stability requires that positive work be done by the external agency during the application of
the stress increments, and that the net work performed by theexternal agency over the cycle of
application and removal of the stress increments be zero or positive. With these two requirements
it can be shown that the plastic strain rate must be normal to the yield surface. The resulting flow
rule is called an associated flow rule and is given by:

ε̇ p = λ̇

∂ f
∂σ

∥

∥

∥

∥

∂ f
∂σ

∥

∥

∥

∥

(2.23)

where λ̇ is the magnitude of the plastic strain rate. For materials whose yield strength has a
strong dependence on hydrostatic pressure, the normal to the yield surface will have a significant
dilatational component. It has been widely reported that for such materials, an associated flow rule
over predicts plastic dilatation [19, 20, 14]. To remedy this problem, a non-associated flow rule
is often employed. This type of flow rule uses a separate flow potential functiong to define the
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plastic strain rate direction:

ε̇ p = λ̇

∂g
∂σ

∥

∥

∥

∥

∂g
∂σ

∥

∥

∥

∥

(2.24)

Non-associated flow rules appear to better predict plastic dilatation under monotonic loading.
However, as indicated by Drucker, models based on such a flow rule suffer from instability for
certain boundary value problems [17, 21, 22, 23, 24]. An additional potentially problematic aspect
of (2.24) is that, unlike (2.23) which is evaluated only whenf = 0 and therefore giving the normal
to the yield surface, equation (2.24) is typically evaluated at stress states for whichg 6= 0 and
therefore there is no corresponding notion of a flow surface.

Sandler and Rubin [21] built upon Drucker’s work by demonstrating a connection between
Drucker’s instability and non-uniqueness in applicationsof rate independent plasticity to dynamic
problems. Sandler and Rubin concluded with a recommendation that rate dependence is essential
to preventing the unstable or non-unique results. Like Drucker, Sandler and Rubin premised their
analysis on the assumption of a regular flow rule. Later Puc̆ik [23] confirmed Sandler and Rubin’s
analytical solution and demonstrated similar results witha finite element and analytical case study.
The example problem consisted of a semi-infinite medium withan initial stress state lying on a
Drucker-Prager yield surface, with a non-associated flow rule as illustrated in Fig. (2.6).

A small disturbance is applied which causes a wave to propagate through the material. The
disturbance was chosen so that the trial stress increment has a positive inner product with the yield
normal, but a negative inner product with the flow potential normal as illustrated in Fig. (2.7). The
region of stress space that has this property is known as the Sandler-Rubin wedge.

It was shown that with this disturbance, the plastic wave speed is faster than the elastic wave
speed. The fact that classical non-associative plasticityallows certain plastic waves to travel faster
than elastic waves has also been independently confirmed by Brannon [25], who showed that ev-
ery ordering of plastic wave speeds relative to elastic wavespeeds is possible, depending on the
details of the nonassociativity. Moreover, Brannon showedthat there are only two classes of non-
associativity (marked regions A and F in Fig. 2 of [25]) for which the plastic wave speeds are
ensured to be always slower than the elastic longitudinal wave speed. In short, this possibility of
plastic waves moving faster than elastic waves is not limited to the idealization of Drucker-Prager
models; any nonassociative model admits this possibility.This causes the loading and unloading
ramps to separate and the pulse width to increase with time. Also the region between the two
ramps, which initially consists of a single point, opens up into a finite region. There exists a two-
parameter family of non-unique solutions in this region. Figure (2.8) illustrates possible analytical
solutions to this problem as found by Sandler, Rubin and Puc̆ik.

As shown in Fig. (2.8) there are solutions for which the wave amplitude grows with time. In
the limit of small disturbances, this implies spontaneous motion from a quiescent state, clearly
a troubling possibility. Puc̆ik also explored this non-uniqueness and instability in the context of
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Figure 2.6. Semi-infinite solid with initial stress state placing it
on the Ducker-Prager yield surface. The perturbation is designed
such that it loads the material into the Sandler-Rubin wedge. (Fig-
ure from unpublished work of T.A. Puc̆ik [23])

finite-element simulations. Puc̆ik discovered that the non-uniqueness and instability may show up
in a finite-element simulation, but they are often difficult to discern in a complex problem since the
instabilities appear to grow linearly with time rather thanexponentially. The non-uniqueness was
demonstrated by slightly varying the initial positions of the nodes. Changing the initial positions
by a distance on the order of the round-off error created dramatic changes in the numerical solution.
Some of these solutions are shown in Fig. (2.9).

Effect of Triaxial Compression on Hydrostatic Limit

An additional assumption that is investigated involves theeffect of triaxial compression loading on
the hydrostatic yield limit for porous materials. As mentioned in the introduction the yield function
is permitted to depend upon the loading history. This occursthrough hardening (or softening,
which we regard as negative hardening). Engineering modelsfor hardening usually support either
kinematic or isotropic hardening. Kinematic hardening involves the translation of the yield surface
in stress space, whereas isotropic hardening involves the expansion of the yield surface. This
report will focus on some assumptions regarding how the yield surface expands through isotropic
hardening that is usually attributed to pore collapse.
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Figure 2.7. The yield surface and plastic potential with the
Sandler-Rubin wedge illustrated. (Figure from unpublished work
of T.A. Puc̆ik [23])

Porous materials may undergo inelastic deformation (pore collapse) due to purely hydrostatic
loading. For this reason the yield surface for these materials must have a “cap” on the hydrostatic
axis. These materials also typically exhibit considerablehardening, which is often assumed to
be isotropic in nature. In some models, this causes the “cap”to expand outward as a material
undergoes shear loading, effectively increasing the yieldstrength of the material in hydrostatic
compression. In this study we seek to asses the validity of existing models which predict this
increase in hydrostatic yield strength due to shear loading.
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Figure 2.8.Possible analytical solutions to the example problem
of Fig. 2.6 (derived by Puc̆ik [23]). Puc̆ik’s analytical solution re-
sulted in a family of solutions with two free parameters (νp and
σ̇p). Each set of plots represents a different choice for the free
parameterσ̇p, as labeled. The plots on the left show a propagat-
ing triangular stress pulse, while the plots on the right show the
corresponding velocity profiles.
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Figure 2.9. Some finite-element solutions to the Puc̆ik wave-
propagation problem. (Simulations performed by Puc̆ik [23]) The
plots on the left represent stress profiles of the shock wave,while
the plots on the right represent the velocity profiles of the shock
wave. Each plot shows the profile of the wave at various distances
into the material. Each case was performed with the exact same
material properties and boundary conditions. The only different
was a slight change of the initial positions of the nodes (on the
order of round-off error).
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Chapter 3

Axisymmetric Plasticity

The validation method presented in this paper analyzes axisymmetric test data in the framework of
classical plasticity theory. The first step in presenting this method will be to simplify the governing
equations of classical plasticity theory for the axisymmetric case. For the general case, the plastic
tangent stiffness tensorTi jkl may be written in terms of the elastic tangent stiffness tensor Ei jkl , the
yield and flow potential functionsf andg, and the ensemble hardening modulusH as [26]:

Ti jkl = Ei jkl −
1
η

Pi j Qkl (3.1)

Pi j = Ei jkl Mkl (3.2)

Qkl = EklopNop (3.3)

Mkl =

∂g
∂σkl

√

∂g
∂σvw

∂g
∂σvw

(3.4)

Nkl =

∂ f
∂σkl

√

∂ f
∂σvw

∂ f
∂σvw

(3.5)

η = Pi j Ni j +H (3.6)

Yield functions for most materials have some degree of symmetry about the hydrostatic [111]
axis. Because of this symmetry, it is often more convenient to express plasticity equations in terms
of a coordinate system aligned with the hydrostat. In this report we will make use of “Lode” coor-
dinates which represent a cylindrical coordinate system with the z-axis aligned with the hydrostat.
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The unique feature of this coordinate system is that it is isomorphic to principal stress space, mean-
ing that angles and lengths are preserved when transformingfrom principal stress space to Lode
coordinate space. This allows geometrically accurate plots of the yield surface and incremental
vectors to be constructed in a lower dimensional space. The Lode coordinates may be found from
the Cauchy stress tensor using the following equations [26]:

σz = 1√
3

trσ

σr = ‖S‖ (3.7)

whereS is the stress deviator, and̂S is a unit tensor in the direction of the stress deviator.

Just as with a traditional cylindrical coordinate system, we also define base “vectors” (in this
case, second order tensors) associated with each coordinate in equation (3.7) [26]:

Ez = I
‖I‖ = I√

3
Er = Ŝ (3.8)

whereŜ is a unit tensor in the direction of the stress deviatorS, andI is the identity tensor. Using
these coordinates under axisymmetric loading, the Cauchy stress tensor may be decomposed as
follows:

σ = σrEr +σzEz (3.9)

If the material is assumed to be either isotropic or transversely isotropic, the strain tensor may
also be decomposed in the same manner by substituting the strain tensor for the Cauchy stress
tensor in equation (3.7):

ε = εrEr + εzEz (3.10)

Using these relations, it can be shown that for isotropic materials under axisymmetric loading,
Hooke’s law can be written in matrix notation as:

[

σ̇r

σ̇z

]

=

[

2G 0
0 3K

][

ε̇r

ε̇z

]

(3.11)

36



whereG is the tangent shear modulus andK is the tangent bulk modulus. The 2×2 matrix above
is a representation of the elastic tangent stiffness tensorused in equation (3.1). Under the same
conditions, the plastic tangent stiffness in (3.1) may alsobe simplified into a 2×2 matrix as fol-
lows:

T = E− 1
η

P⊗Q (3.12)

where,

[

Pr

Pz

]

=

[

2G 0
0 3K

][

Mr

Mz

]

(3.13)

[

Qr

Qz

]

=

[

2G 0
0 3K

][

Nr

Nz

]

(3.14)

η = P ·N+H (3.15)

and the subscriptsr andz indicate the components in the corresponding Lode coordinate directions.
We have now reduced the plastic tangent stiffness down to a 2×2 matrix representation for the case
of an isotropic material under axisymmetric loading which is assumed to obey classical plasticity
theory. Since this reduces the number of independent components ofT from 81 to 4, this greatly
simplifies the task of experimentally measuring the plastictangent stiffness tensor.

37



38



Chapter 4

Methodology

Flow Rule Validation

To calculate the four components of a tensor such asT, we require two independent sets of vectors
related by that tensor. For the case of the plastic tangent stiffness tensor, this means two indepen-
dent strain increment vectors, and the corresponding stress increment vectors. SinceT is a function
of the stress state and loading history, these stress and strain increments must occur at the same
stress state and point in the loading history. How these incremental vectors are obtained will be
discussed later. First we describe the process of solving for the components of the tangent stiff-
ness tensor given the independent sets of vectors related byit. Suppose we have two sets of stress
increments (̇σ1, σ̇2), and strain increments (ε̇1, ε̇2) related by the same plastic tangent stiffness
tensor:

[

σ̇1r

σ̇1z

]

=

[

T11 T12

T21 T22

][

ε̇1r

ε̇1z

]

(4.1)

and

[

σ̇2r

σ̇2z

]

=

[

T11 T12
T21 T22

][

ε̇2r

ε̇2z

]

(4.2)

The two equations above may be combined into a single matrix equation:

[

σ̇1r σ̇2r

σ̇1z σ̇2z

]

=

[

T11 T12

T21 T22

][

ε̇1r ε̇2r

ε̇1z ε̇2z

]

(4.3)

where the subscripts 1 and 2 indicate the first and second vector set. The components ofT can be
found by multiplying both sides of equation (4.3) by the inverse of the strain matrix:

[

T11 T12

T21 T22

]

=

[

σ̇r1 σ̇r2

σ̇z1 σ̇z2

][

ε̇r1 ε̇r2

ε̇z1 ε̇z2

]−1

(4.4)
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If there were more than two independent stress/strain increment sets related by the same tensor,
the strain and strain rate matrices in equation (4.3) would not be square. A pseudo-inverse opera-
tion could be used in equation (4.4) instead of the inverse operation. This would yield the tensor
which best fits the vector data.

Obtaining two independent stress/strain increments at thesame material state is not trivial. It is
to avoid this problem that most studies of this nature turn tocomputational methods, which allow
this to be done easily. As discussed above, most experimental studies have sought to overcome
this problem by preparing a set of nominally identical specimens and loading them each through
identical load paths, then applying a different loading increment to each specimen. Valuable data
have been obtained using this method, which will serve as a validation measure for the current
study. To eliminate the need for “identical” samples, the method described in this report allows
independent loading increments to be obtained at the same state from a single specimen using
cyclically applied loading increments and an interpolation scheme.

dσA, dǫA1

dσB,dǫB

dσA, dǫA2

σz

σr

ψ1

ψ2

ψ3

Figure 4.1. A simple cyclically applied incremental loading.
Solid vector lines indicate stress vectors, dotted vector lines in-
dicate strain vectors.

This concept is illustrated in Figure 4.1, where the cyclical load begins at an initial material
state denoted byψ1. An incremental stress loading vectordσA is then applied taking the material
state toψ2. Then, a different stress loading vectordσB is applied, taking the material state toψ3.
Finally, the incremental loading vectordσA is applied again, this time beginning from material
stateψ3. In each case, the incremental strain vector is measured. Weare now left with three
stress/strain incremental vector sets at three different material states. If we wish to find the tangent
stiffness tensor at material stateψ2, we need to know what the strain response vector would have
been had we applied the loading vectordσA at material stateψ2. While we do not have this
information, we do know what the strain response vector corresponding todσA was immediately
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before, and immediately after material stateψ2. It is assumed that interpolation may be used with
these two pieces of information to infer what the strain response would have beenat material
stateψ2 if the loading vectordσA would have been applied at that point. In the limit of small
loading increments this assumption is valid if the materialchanges in a continuous manner with
the state variables. The material could change discontinuously as a result of vertices in the yield
function, phase transformations, and other such sources. The validity of this assumption will be
assessed by comparing the results of this analysis with studies which have used other methods and
assumptions. With this interpolated strain response vector we will have two independent loading
vectors, and the corresponding strain vectors at the same material state. This is sufficient to find
the components of the tangent stiffness tensor using equation (4.4).

In practice, a slightly more complicated incremental loading cycle has been used. Rather than
only using two independent loading directions, four have been used. Unloading increments have
been included in the cycle, to allow the potentially evolving elastic tangent stiffness to be calculated
in a similar manner.

Knowing the plastic and elastic tangent stiffness tensors will allow M andN to be calculated
directly from the experimental data. To do this we solve equation (3.12) for the second term on the
right, which we will labelA:

A = E−T =
1
η

P⊗Q (4.5)

The rows ofA should be scalar multiples ofQ and the columns should be scalar multiples of
P. To find the directions ofP andQ we perform a polar decomposition ofA. To perform this
decomposition we define:

U2 = AT ·A
= (Q⊗P) · (P⊗Q)
= (P·P)Q⊗Q

(4.6)

As shown,U2 will be a scalar multiple of the dyadQ⊗Q. U2 should then have one large
eigenvalue and one small eigenvalue. The eigenvector associated with the large eigenvalue will be
in the direction ofQ. Similarly we define:

V2 = A ·AT

= (P⊗Q) · (Q⊗P)
= (Q ·Q)P⊗P

(4.7)

Again, the eigenvector associated with the largest eigenvalue ofV2 will be in the direction of
P. We now use the definitions ofP andQ to write:

P∗ = αE ·M (4.8)
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Q∗ = βE ·N (4.9)

whereα andβ are some unknown scalars, andP∗ andQ∗ are scalar multiples ofP andQ respec-
tively. SinceE is known from the unloading vectors, equations (3.2) and (3.3) may be solved for
the directions ofM andN:

M∗ = E−1 ·P∗ (4.10)

N∗ = E−1 ·Q∗ (4.11)

where∗ is again used to indicate some scalar multiple of a variable,which may then be used to
generate a unit vector in the direction of the tensor.

Cap Model Hardening Validation

To assess the validity of an increase in hydrostatic yield strength due to inelastic shear deformation,
a series of modified triaxial compression load paths has beendesigned. The first of these load paths
consists of purely hydrostatic loading, with small unloading increments applied periodically. This
test is performed to identify the level of hydrostatic loading where inelastic deformation occurs.
This will be the initial location of the “cap” of the yield surface. The second test is a traditional
triaxial compression test. In this test the sample is loadedhydrostatically to a point just below
the cap identified in the first test. Then the lateral stress isheld constant while the axial stress is
monotonically increased until the material fails. As the axial stress is increased, the volumetric
strain is monitored. The volumetric strain will initially decrease (decrease in volume), then will
reach a point where the sample volume begins to increase.

Figure 4.2 illustrates the third load path through stress space. The path is identical to the
traditional triaxial compression path (load path 2), except that after the onset of dilatation, the
triaxial compression leg is stopped. The specimen is returned to a state of pure hydrostatic stress
via a path with a constant mean stress. The specimen is then loaded in hydrostatic compression
to the limits of the machine capacity. As Figure 4.2 illustrates, according to some models, the
shear loading should greatly increase the hydrostatic yield strength. The proposed validation load
path tests this by first inelastically loading in shear to cause the desired hardening, then loading in
hydrostatic compression to see if the hydrostatic yield strength is significantly different than that
of a virgin sample.
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σr

σz

Load Path 2

Load Path 3
Evolving Yield Surface

Figure 4.2. Sketch of a triaxial compression test (bold arrow)
with a corresponding unvalidated yield surface evolution that pre-
dicts outward motion of the cap even after onset of dilatation; in
the theoretical model under investigation, the onset of dilatation
corresponds to the point where the load path crosses over thepeak
point of the evolving cap.
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Chapter 5

Testing Procedure

Sample Preparation

Three metals, a ceramic and a rock were tested as part of this study. Sample sizes are listed in the
test list. All samples were prepared into the shape of a rightcircular cylinder. The dimensions of all
samples were nominally length-to-diameter ratios of 2:1 asrecommended for uniaxial and triaxial
compression tests (ASTM D4534). The metals and ceramic weredelivered in rods and their outer
diameter was used as is, except that it was cleaned and or sanded lightly. The rods were cut to
length using a saw. The rock samples were cored from blocks ofrock, perpendicular to bedding.
The ends of all samples were ground flat and parallel using a surface grinder.

The metal and ceramic samples were mounted with strain gagesto record axial and lateral
strains as shown in Fig. (5.1). Two (at 180◦ intervals) or three (at 120◦ intervals) strain gage
pairs were mounted at the middle of each specimen, each pair consisting of an axial and a lateral
strain gage. The gages are mounted with a thin layer of quick curing epoxy and are placed by
hand on the specimen. The redundancy in strain measurementswas done in order to assess the
potential for specimen/loading column alignment, asymmetry in the loading, etc. The strain gages
are 2% foil gages with a resolution of 10µstrains. For each strain gage pair, the axial strain gage
(parallel to the long axis of the sample) and lateral strain gage (perpendicular to the long axis of
the sample) were used to measure axial and lateral strains, respectively. The redundancy of strain
gage measurements was used to best quantify strains measured, as well as to determine if there was
sample misalignment and, in some cases, to account for loss of an individual gage output during a
test.

Metal specimens were coated with paint-on urethane to protect the strain gages and to hold
the sample and the end caps together. An attempt was made to minimize sample misalignment by
inserting a spherical interface at top platen.

Prepared rock specimens (Fig. 5.2) were first covered with a single ply of thin (.005 in) an-
nealed copper (Fig. 5.3) to prevent the confining pressure fluid (Isopar) from contacting and/or
entering the pore space of the specimen when it was placed in the pressure vessel. The jacket was
fabricated by winding it around the specimen and soldering aseal along the specimen axis. Liquid
polyurethane was applied to the end of the copper jacket thatlapped over the two cylindrical steel
end caps that were placed on either end of the specimen. For curing, this assembly was mounted in
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Figure 5.1.Strain gaged aluminum specimens

a lathe and slowly rotated around its central axis to maintain uniform thickness of the polyurethane
lapping membrane.

When the urethane had cured, the sample was placed in a pressure vessel and pressurized
externally using line air pressure. This pressurization pressed the copper jacket snuggly against the
rock. Next, on opposing sides of the sample at the axial midpoint, a locator button was soldered
(Fig. 5.4).

Instead of strain gages, rock test specimens were instrumented with electronic deformation
transducers before they were placed in the pressure vessel assembly. Radial deformation was
measured as the point measurement across the specimen diameter by a linear variable differential
transformer (LVDT). The resolution of the LVDTs used is 0.0002. The radial LVDT is spring
loaded and is positioned on the buttons attached to the sample (Fig. 5.4). Axial deformation was
measured by two linear variable differential transformers(LVDTs) mounted to the specimen end
caps across the specimen length. The displacement recordedis the average from the two gages.
The change in this electrical output versus displacement was established prior to testing through
calibration.
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Figure 5.2.Right circular cylinder of Castlegate sandstone.

Test Method

Strength and deformational properties of pressure-sensitive materials such as rock are commonly
determined using the quasi-static triaxial compression test. In using this technique, cylindrical test
specimens are initially subjected to an all-around pressure (or confining pressure) and then are
loaded to failure by applying compressive force to the ends of the specimens (i.e., parallel to their
central axes). The difference between the axial load (expressed in terms of stress) at failure and
the confining pressure applied to the sides of the specimen isdefined as the confined compressive
strength. The effect of confining pressure on compressive strength is evaluated by conducting a
series of tests at different confining pressures spanning the range of interest. Test specimens are
normally instrumented (described above) to measure axial and radial deformations (strains) during
the application of both the confining pressure (i.e., hydrostatic loading) and axial load (i.e., shear
loading). Stress-strain data are useful in evaluating particular mechanical properties such as elastic
moduli.

Figure 5.5 shows the computer-controlled servohydraulic testing system used to conduct the
room-temperature (77F) quasi-static triaxial compression tests for this study. The system com-
prised an SBEL pressure vessel assembly and an MTS Systems reaction frame. During testing,
the pressure vessel housed the test specimen and was hydraulically connected to a pressure inten-
sifier capable of inducing pressures up to 55,000 psi using silicon oil (Isopar) as the pressurizing
medium. The reaction frame is equipped with a movable cross-head to accommodate various
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Figure 5.3. Right circular cylinder of Castlegate sandstone jack-
eted in copper with end caps attached.

sizes of pressure vessel assemblies and is capable of applying axial loads up to 1,000,0000 pounds
through a hydraulic actuator located in the base of the frame. Vessel pressures were measured by a
pressure transducer plumbed directly into a port machined in the vessel, whereas axial loads were
measured by a load cell inside the pressure vessel (resolution of 5 pounds, accurate to 0.5% at full
scale [45,000 lbf ]).

Setup of the quasi-static triaxial compression tests included placing the jacketed, instrumented
specimen assembly into the pressure vessel, connecting instrumentation leads to feed-throughs in
the pressure vessel, filling the vessel with oil, and mounting the pressure vessel assembly into the
reaction frame (see Fig. 5.5). The actuator in the base of theframe was then advanced gradually
raising the pressure vessel assembly into position for the test. No axial load was placed on the
sample prior to the test, rather, the loading piston was advanced until it was very close to applying
a load. Then, initiation of the test was turned over to the TESTAR test system controllers which
automatically increased the confining pressure to the correct target hydrostatic stress (all-around
pressure); the loading frame was in displacement control while increasing the confining pressure.
Confining pressure loading was sometimes interrupted several times during each test to initiate an
unload/reload cycle. The unload/reload stress-strain data may be used to evaluate elastic moduli.

For the tests on rock, once the test system had stabilized at the target pressure, the system was
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Figure 5.4. Right circular cylinder of deformed Castlegate sand-
stone, showing the complete sample assembly with axial and radial
LVDTs

switched to stroke control and additional axial load was applied to the specimen using axial strain
rate as the feedback mode. When the system was switched to total stroke control, the location
of the top of the sample had to be found by the machine. This wasaccomplished by telling the
machine to search for the sample in axial load steps of a specific size until the sample is found by
applying a small force/stress. During this time, the confining pressure is held constant. Ultimately,
the sample is found and some time later, the test is begun, by increasing axial stress at a specified
rate to arrive at a starting stress state in net path mode. In data analysis, there is a time pick
on start of the test. For absolute determinations of axial stress, the internal force gage reading
should be re-zeroed at the test start. The strain rate applied in all tests was 1×10−4 s−1. Axial
loading was sometimes interrupted several times during each test to initiate an unload/reload cycle.
Axial loading continued until either a peak axial load was observed or the desired range of the
deformation was achieved.

For the tests on metal and ceramic, once the test system had stabilized at the target pressure, the
system was switched to total axial stress control using the internal load cell and confining pressure
transducer. When the system was switched to total axial stress control, the location of the top of
the sample had to be “found” by the machine. If a path load testwas performed, at this point in
the test, the path loading was begun. When in net loading or path loading, lateral and axial loads
were programmed and controlled separately and simultaneously based on a rate to target stress
state(s). It will be shown later that sometimes the stress states were achieved by multi-directional
axisymmetric loading.
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Figure 5.5. Testing system used to conduct quasi-static triaxial
compression tests.

We completed a total of 43 experiments on copper (2), aluminum, steel, ceramic (2), Salem
Limestone, and Castlegate Sandstone (Table 5). Some of the experiments were conducted to figure
out how to best perform an experiment, some experiments wereconducted to search out materials
that we could test in a manner such that we could measure the desired response within the load
limits of the experimental apparatus with the desired control on force (stress) and displacement
(strain) to provide value to the analysis.

Calibration

Data collected in the experimental study included force, pressure, and displacement. Typically,
these data are acquired using electronic transducers in which the electrical output is proportional to
the change in the measured variable. In all cases, the constants of proportionality were determined
through careful calibration using standards traceable to the National Institute for Standards and
Technology.
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Table 5.1. Experiment number, test date, specimen dimensions
and confining pressure.
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Chapter 6

Discussion of Results

Regular Flow Rule

The first aim of this study was to develop a load path suitable for assessing the validity of the
classical plasticity assumption of a regular flow rule. Fourloading directions were selected. We
define a stress increment by:

σ̇z = Σ̇cosα
σ̇r = Σ̇sinα (6.1)

whereΣ̇ is the increment magnitude andα is the angle formed between the stress increment and
the hydrostatic compression axis. The four legs labeled A, B, C and D are described in Table (6).

Smaller increments were used in early tests, but the measurements had a low degree of repeata-
bility since the “noise” was of the same order of magnitude asthe measurements themselves. The
increments were progressively made larger until good repeatability was attained.

As discussed previously, unloading increments were included so that the elastic properties of
the material could also be calculated. The unloading increments were chosen to have the same
magnitude as the loading increments. This not only allows the elastic tangent stiffness to be com-
puted, but also allows the plastic strain increments to be directly measured. This is done by mea-
suring the strain increment during the loading and unloading increments of each cycle. The strain

Table 6.1. Description of stress increments whereα is the angle
formed with the hydrostatic compression axis, andΣ̇ is the total
increment magnitude.

Leg α Σ̇
A 90◦ 300 psi
B 180◦ 300 psi
C 35◦ 300 psi
D 125◦ 300 psi
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that remains after completely unloading each loading increment is the plastic strain increment for
that loading cycle.

Figs. 6.1 and 6.2 show the strain response envelopes for three different tests. These envelopes
are constructed from interpolated strain increments from the first loading cycle, which is near the
initiation of yielding for each sample. A key feature of these response envelopes is the orientation
of the plastic strain increments (red dots). With the exception of a single increment in Fig. 6.1(a),
all of the plastic strain increments lie nearly in a straightline in the first quadrant. Similar results
were found for the other stress cycles. This means that the direction of the plastic strain increment
is the same regardless of the loading direction, which indicates a regular flow rule. This is consis-
tent with the experimental and numerical studies mentionedpreviously, which seems to validate
the interpolation scheme used in this study.

(a) Second cycle of
LP-TA22

(b) Second cycle of
LP-TA23

(c) Second cycle of
LP-TA24

Figure 6.1. Response envelopes for the second stress cycle of
tests LP-TA22 (a), LP-TA23 (a) and LP-TA24 (c). Black dots in-
dicate total strain increments, red dots indicate plastic strain incre-
ments. All strain increments have been interpolated to a common
material state using a cyclical loading cycle. The partial ellipses
are a visualization of the best fit tangent stiffness tensorsC (black)
andT (gray), which were found via a pseudo-inverse method us-
ing the four stress/strain increment pairs. These ellipsesrepresent
a circle in stress space mapped to strain space.
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(a) Third cycle
of LP-TA22

(b) Third cycle
of LP-TA23

(c) Third cycle
of LP-TA24

Figure 6.2. Response envelopes for the third stress cycle of tests
LP-TA22 (a), LP-TA23 (b) and LP-TA24 (c). Black dots indicate
total strain increments, red dots indicate plastic strain increments.
All strain increments have been interpolated to a common material
state using a cyclical loading cycle. The partial ellipses are a vi-
sualization of the best fit tangent stiffness tensorsC (black) andT
(gray), which were found via a pseudo-inverse method using the
four stress/strain increment pairs. These ellipses represent a circle
in stress space mapped to strain space.

The plastic strain increments in the third quadrant for testLP-TA22 merit some discussion.
The increments shown in Fig. 6.1(a) and 6.2(a) are not anomalies, but were observed for every
load increment B in that test. This loading direction is of particular interest because for models
which use a pressure dependent yield strength and a non-associated flow rule, this direction lies
in or near the Sandler-Rubin wedge. Some degree of pressure dependence in the yield strength
was observed in these tests. This means that loading increment B should be directed outward from
the yield surface, but at a relatively shallow angle. For such a stress increment the corresponding
plastic strain increment would be expected to be small compared to the total strain increment.
Since the plastic strain increments are small for these loading increments, they are more prone to
experimental error. Nevertheless, the fact that every loading increment B exhibited this behavior is
enough to suggest that theremaybe something unusual occurring for loads in this direction.
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Non-associated Flow Rule

As discussed previously, the load path used in this study wasdesigned in such a manner as to allow
the plastic tangent stiffness tensorT and the elastic tangent stiffness tensorC to be computed
directly from the measured stress and strain increments. These calculations were performed using
equation (4.4). These tensors are visualized as ellipses inFigs. 6.1 and 6.2. These ellipses represent
a circle in stress spaceσ2

r + σ2
z = (300psi)2, transformed to strain space via the calculated “best

fit” stiffness tensorsT andC. The ellipses for the second cycle (Fig. 6.1) appear to fit thedata
rather well. It is noted that the strain response envelope should be continuous. This means that the
ellipse formed by the plastic tangent stiffness tensorT and the ellipse formed by the elastic tangent
stiffness tensorC should intersect where the yield surface intersect the circle in stress space. This
is nearly the case for the strain envelopes in Fig. 6.1. However, the strain envelopes for the third
cycle (Fig. 6.2) are discontinuous. This might indicate that, at such large plastic strain increment
magnitudes, more data are required to obtain a better fit for tangent stiffness tensors. Alternatively,
noting that the initially nearly uniform distribution of stimulus vectors (i.e. the stress increments)
transform to a grouping of relatively clustered response vectors (strain increments), it is possible
that the material is undergoing a nonlinearity in the response vector density. An example of a
nonlinear response vector density is shown in Fig. 2.1(d), perhaps even suggesting the formation
of an ”unattainable” wedge in the response vectors. Again, further data for a larger variety of
loading directions is needed to investigate this conjecture.

Using these “best fit” tangent stiffness tensors, the directions of the yield surface normalN and
plastic strain rate directionM were calculated using equations (4.5) through (4.9). The results of
these calculations are found in Table 6. The directions ofM andN do not coincide for any of the
cases, which seems to indicate a non-associated flow rule. Induced anisotropy may play a role in
creating apparent non-associativity. Despite having beenannealed, it is clear that some degree of
anisotropy was inherent in the specimens used in these tests. This can be clearly seen in theσr vs
εr stress strain curves, as in Fig. 6.3. Due to the unidirectional nature of the initial phase of the load
path, it is not possible to discern the amount of anisotropy which was inherent in the sample, and
how much was induced by plastic deformation. This adds a degree of uncertainty in the results of
this aspect of the study that can be rectified by adding stressincrement probing to the initial elastic
legs. Due to these factors, and the limited amount of data, more investigation would be required to
make any firm conclusions based upon these calculations.

Table 6.2.Direction of the yield surface normalN and the plastic
strain rateM referenced to the hydrostatic compression axis.

Step θM θN

2 39◦ 66◦

3 105◦ 146◦

4 125◦ 198◦

(a) LP-TA22

Step θM θN

2 99◦ 120◦

3 153◦ 173◦

4 - -
(b) LP-TA23

Step θM θN

2 83◦ 122◦

3 116◦ 163◦

4 131◦ 179◦

(c) LP-TA24
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Figure 6.3. The σr vs. εr stress strain curve for test LP-TA20,
illustrating the initial anisotropy in the material. The anisotropy is
evidenced by the change (decrease) in the strainεr during the ini-
tial hydrostatic loading leg of the test where theσr stress remains
nearly constant. This indicates that the material is undergoing a
shear deformation due to a purely hydrostatic loading.

Cap Model Validation

As discussed in the Introduction, non-proportional loading experiments were proposed to investi-
gate the validity of an existing model [6] for the evolution of the cap hydrostat intersection point
(i.e., the hydrostatic elastic limit) in response to first loading away from this point (see the cap
evolution illustrated in Fig. 4.2).

As seen in Fig. 6.4 the geomechanics theory under investigation accurately predicts dilatation
observed in triaxial compression (TXC), but it does so by moving the cap outward (see Fig. 4.2).
Such behavior, which has never been validated, is counterintuitive because it implies that dilatation
(increasing void space) actually increases the material’sresistance to yield in hydrostatic compres-
sion. Validating this prediction requires first selecting amaterial that exhibits dilatation in TXC
so that the dilation phase can be interrupted with a change inthe loading direction to probe the
movement of the cap in response to dilatation. Standard geomechanics testing typically involves
no such change in loading directions. Therefore existing data that exhibits dilatation in TXC, such
as that in Fig. 6.4 or more recent similar data for CastlegateSandstone [28] is of limited value in
this validation effort other than to suggest an appropriatematerial for testing. Given that the recent
Castlegate Sandstone tested by Holcomb and coworkers [28] displayed a clear dilatation “knee”, it
seemed natural to reproduce those results and extend them with an excursion to the hydrostat. The
block of Castlegate sandstone used by Holcomb was no longer available, so new samples from
a different block were used. Unfortunately, however, the TXC dilatation behavior observed by
Holcomb was not observed in the new samples. Contrast, for example, the difference in charac-
ter between Fig. 6.4, which exhibits dilatation, and the blue curve in Fig. A.5, which shows no
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Figure 6.4. Validation of a geomechanics model for loading
of Sidewinder Tuff under triaxial compression [27]. (Note:the
present work aims to extend validation for changes in the loading
direction away from standard triaxial compression load paths of
this kind.)

dilatation.

Hydrostatic compression and triaxial compression tests were performed on several Castlegate
sandstone specimens at a variety of confining pressures. Thehydrostatic compression tests re-
vealed that the hydrostatic yield strength of this materialis approximately 35 ksi. For the triaxial
compression tests with a confining pressure above 12 ksi the machine capacity was reached before
reaching failure or dilatation. For tests with a confining pressure of 12 ksi or less the material did
fail, but no dilatation was observed prior to failure. The hardening models under consideration
in this study predict an increase in hydrostatic yield strength even in the dilatation range. Since
dilatation was never observed in the tests, no assessment ofthe validity of this aspect of these
models is possible from the data. However, the fact that no dilatation was observed, along with
some unusual behavior of the lateral strain measurements, calls for further investigation.
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Chapter 7

Conclusions

Systematic laboratory experiments on three metals, two rock types, and one ceramic have been
conducted to explore validity of unproven assumptions thatare common to virtually all plasticity
models used in production-level engineering simulations.A particular goal has been to resolve the
paradox that non-associativity has been experimentally well established for most materials (includ-
ing metals), while at the same time any form of non-associativity admits a physically inadmissible
dynamic instability that is equivalent to spontaneous motion from a quiescent state. Noting that
the stress increments in standard testing are significantlydifferent from the increment that induces
instability, it was conjectured that a revision might be required in engineering plasticity models that
allows the plastic tangent tensor to vary with the loading direction. Such a feature, if observed,
would correspond to a need to revise existing plasticity theories to accommodate incremental non-
linearity. Testing for this possibility required nonstandard tests that aim to quantify the effect
of a variety of loading directions on the material response.A secondary goal that also requires
changing the loading direction was to assess the merits of hardening models for cap plasticity that
counterintuitively predict that volumetric expansion from crack growth in shear causes hydrostatic
strengthening.

For tractability, the laboratory experiments were limitedto axisymmetric loading, and changes
in loading direction were achieved through independent control of axial and lateral components of
stress. A cyclic path through stress space was applied, and ameans to interpolate between repeated
pairs of stimulus-response vectors to any desired point along the loading path was developed. The
result of this data analysis was information about materialresponse to stress increments in eight
possible directions. The response vectors were visualizedusing Gudehus strain response diagrams,
which simply join the strain increment vectors at their tails so that the tips of these vectors form a
closed curve. If the assumption of incremental linearity that is used in classical plasticity theory is
correct, then the Gudehus diagram for total strain increments will be an ellipse in elastic loading
and the continuous union of two ellipses in elastic-plasticloading. This was generally observed
in the data, and mathematical formulas were provided to perform a least-squares fit to the data
to determine the tangent modulus for a classical plasticitymodel to minimize error in general
loading. The residual from such a calculation serves as a quantitative metric of the approximation
error associated with using classical models.

Since the experiments included both loading and unloading legs, the data were further reduced
to decompose the strain increment response vector into elastic and plastic parts, which enabled
investigation of the assumption of a regular flow rule. This rule presumes that only the magnitude
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of the plastic strain increment is affected by the total strain increment vector, whereas the direction
of the plastic strain increment is fixed. In a Gudehus plot, the regular flow rule therefore predicts
that the plastic strain increment vectors must point in a single direction. This general behavior was
observed overall, but in some of the tests, the loading increment that was closest to the theoretical
direction for instability deviated from this direction. Further experiments are needed to confirm the
unusual behavior in this loading direction. If this phenomenon is real, then it would preclude the
theoretical instability of classical plasticity theories, and revisions of these theories would require
introduction of an additional zone of loading with a third tangent tensor, distinct from the conven-
tional plastic and elastic tangent tensors. There are alternative interpretations of the observations
in these tests (such as introduction of a backstrain) that might equally well predict such behavior.
Moreover, as discussed above, some degree of transverse anisotropy was observed in the results,
which could also cause behavior that would be missed by isotropic theories. The material behavior
observed in the axisymmetric testing of this research was consistent with several DEM simulations
[12] under similar conditions, which suggests that the interpolation scheme used in our study is
reasonable and also suggests that the trends observed in theDEM studies are suggestive of real
material behavior. As such, it should be noted that the DEM studies explored a much wider range
of loading directions, some of which exhibited severe deviations from classical plasticity theory.
Therefore further testing is recommended.

As is clear from the numerous test results in the Appendix, a large number of experiments
were conducted. Of these, however, only a few gave data that were suitable for analysis of plastic
flow behavior. The majority of tests served to develop the testing methodology and material selec-
tion. For this reason, our investigation of the validity of plasticity assumptions should be regarded
as incomplete but meriting followup testing using the new techniques developed in this research
effort.

Although the data are not yet conclusive, the potential for invalidation of incremental plasticity,
together with noticeable induced anisotropy, casts serious doubt on the predictiveness of classical
nonassociative plasticity models at Sandia (and elsewhere). Controlled validation data are rarely
available to the constitutive modeler. This research can improve theories for extrapolating from
limited calibration data to the still large set of unexplored loading trajectories typical in engi-
neering applications. Any engineering simulation involving non-monotonic stress increments will
probably significantly benefit from investment in development of incrementally nonlinear plasticity
theories, as well as induced anisotropy. To

prioritize new experimental and theoretical efforts in this area, it is recommended that the
loading paths that materials undergo in engineering simulations be monitored so that those loading
paths receive highest priority in testing.
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Appendix A

Summary of Tests

A.1 Cap Model Validation Tests

A.1.1 CG-CD02

This test was a purely hydrostatic test. The maximum pressure attained in this test was approx-
imately 60 ksi, with resulting maximum volumetric strain ofapproximately 10%. The material
appeared to yield at approximately 40 ksi pressure (σz =69ksi) and 4.5% volumetric strain as
shown if Fig. (A.1).

Figure A.1. Hydrostatic compression curve for CG-CD02.εv

represents the volumetric strain.
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A.1.2 CG-CD03

This test was an attempt at load path three (triaxial compression until midway between the critical
point and failure point, then return to hydrostatic loading). The sample was subjected to hydrostatic
loading to 10 ksi, then underwent triaxial compression until the stress deviator reached 9591 ksi.
The load was then ramped down to the hydrostatic axis and hydrostatic loading continued until the
pressure was approximately 37 ksi. The lateral strain gage was very erratic, resulting in strange
discontinuous stress/strain curves.

A.1.3 CG2-CD03

This test was a purely hydrostatic test. The material appeared to yield at approximately 35 ksi as
shown in the plot below. Near the end of the test the lateral strain gage failed resulting in the sharp
“spike” in the stress/strain curves.

Figure A.2. Stress/strain curves for test CG2-CD03.

64



A.1.4 CG2-CD04

This test was also a hydrostatic test, however, the results were quite different from CG2-CD03.

A.1.5 CG2-CD05

This test appears was identical to CG2-CD04. This seems to suggest that these two test agree, and
that there is a problem with CG2-CD03.

A.1.6 CG2-CD06

This test was a triaxial compression test with a confining pressure of 32 ksi. The lateral strain
measurement appeared to be very unusual as shown in Fig. A.3.The load cell capacity was
reached before the material failed. No dilatation was observed in this test.

A.1.7 CG2-CD07

Due to the strange lateral strain measurement in CG2-CD06, the test was repeated with a confining
pressure of 30 ksi. Similar results were observed. As with test CG2-CD07, the load cell reached
its limit before the material failed.

A.1.8 CG2-CD09

In a attempt to fail the material the confining pressure was further reduced to 24 ksi. Material
failure was still not attained before the load cell capacitywas reached. However, the strain mea-
surements were trending in the expected directions.

A.1.9 CG2-CD10

The confining pressure was further reduced to 20 ksi with results similar to CG2-CD09. Various
strain measurements are shown plotted versus axial stress in Fig. A.4.

A.1.10 CG2-CD11

The confining pressure was further reduced to 12 ksi and material failure was attained. However,
a critical point (onset of dilatation) was not observed. Various strain measurements are plotted
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Figure A.3. Lateral strain measurement vs. differential stress
from test CG2-CD06. Note that during the hydrostatic leg the
lateral strain first increases, then decreases, then increases again
while there is not change in loading direction. This result seems
very unusual.

versus axial stress in Fig. A.5.

A.1.11 G2-CD12

The confining pressure was further reduced to 7 ksi, and againmaterial failure was attained. As
with CG2-CD11 no critical point was observed.
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Figure A.4. Various strain measurements vs. axial stress for test
CG2-CD10. Red curve is the axial strain, blue is the volumetric
strain, and the green is the lateral strain.
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Figure A.5. Various strain measurements vs. axial stress for test
CG2-CD11. Red curve is the axial strain, blue is the volumetric
strain, and the green is the lateral strain.
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A.2 Flow Rule Validation Tests

A.2.1 LP-TA18

This test was a calibration test. The sample was hydrostatically compressed to 20 ksi, then loaded
through a triaxial path with netσr/σz angle of 110 degrees. This test was used to determine the
yield strength of the material. This helped to determine where to begin the loading profile for latter
tests. Summary plots for this test may be found in Figs. A.6, A.7, and A.8.
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Figure A.6. The loading path for test LP-TA18 in r-z stress space
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Figure A.7. Theσr /εr stress strain plot for test LP-TA18.

69



0.02 0.04 0.06 0.08
Εz

5000

10 000

15 000

20 000

25 000

30 000

35 000

Σz

Figure A.8. Theσz/εz stress strain plot for test LP-TA18.
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A.2.2 LP-TA19

This test used the same net path as LP-TA18. When the stress difference reached 3500 psi the
zig-zag load path was initiated. This load path was continued until the material failed. One of the
three axial strain gages was not in good agreement with the other two. The lateral gage readings
appeared to be good. This data included tags that indicate the beginning and end of each leg and
step in the loading path. These tags are used to extract the incremental vectors from the data. The
unloading increments used in this test were too small to allow useful data to be subtracted. Fig.
A.12 is a plot of shear stress versus shear strain for tests LP-TA18 and LP-TA19. The plot seems
to indicate work-hardening in sample LP-TA19. Summary plots for this test may be found in Figs.
A.9, A.10, and A.11.
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Figure A.9. The loading path for test LP-TA19 in r-z stress space
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Figure A.10. Theσr /εr stress strain plot for test LP-TA19.
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Figure A.11. Theσz/εz stress strain plot for test LP-TA19.

Figure A.12. Equivalent shear stressσr versus equivalent shear
strainεr for test LP-TA18 (blue) and LP-TA19 (red).
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A.2.3 LP-TA20

This data was similar to LP-TA19, except is was performed at alower confining pressure. This data
did not include tags indicating the beginning and end of the steps. For this reason the incremental
vectors were not extracted from the data. Summary plots for this test may be found in Figs. A.13,
A.14, and A.15.
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Figure A.13. The loading path for test LP-TA20 in r-z stress
space
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Figure A.14. Theσr /εr stress strain plot for test LP-TA20.
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Figure A.15. Theσz/εz stress strain plot for test LP-TA20.
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A.2.4 LP-TA21

This data was similar to LP-TA19, except it was performed at alower confining pressure. This
data did include the leg and step tags. However, the unloading increments for this test were also
too small to allow useful data to be extracted. Summary plotsfor this test may be found in Figs.
A.16, A.17, and A.18.
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Figure A.16. The loading path for test LP-TA21 in r-z stress
space
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Figure A.17. Theσr /εr stress strain plot for test LP-TA21.
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Figure A.18. Theσz/εz stress strain plot for test LP-TA21.
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A.2.5 LP-TA22

The loading profile was changed for this dataset. The loadingincrements were increased from 230
psi in magnitude to 300 psi. The loading increments were chosen to be the same magnitude as the
loading increments, but with opposite direction. This means that each loading increment is fully
unloaded, the reloaded. This allows useful information to be extracted from both the loading and
unloading increments. Also, since the loading legs are fully unloaded, the plastic strain can be
directly measured by measuring the strain that remains after unloading each stress increment. This
proved to be very useful. Summary plots for this test may be found in Figs. A.19, A.20, and A.21.

31 000 32 000 33 000
Σz

1000

2000

3000

4000

5000

6000

7000
Σr

Figure A.19. The loading path for test LP-TA22 in r-z stress
space
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Figure A.20. Theσr /εr stress strain plot for test LP-TA22.
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Figure A.21. Theσz/εz stress strain plot for test LP-TA22.
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Figure A.22. Strain response envelope for the second loading
cycle for test LP-TA22.
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Figure A.23. Strain response envelope for the third loading cycle
for test LP-TA22.
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Figure A.24. Strain response envelope for the fourth loading
cycle for test LP-TA22.
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Figure A.25. Strain response envelope for the fifth loading cycle
for test LP-TA22.
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A.2.6 LP-TA23

This test was similar to LP-TA23, only at a slightly lower pressure. Summary plots for this test
may be found in Figs. A.26, A.27, and A.28.

30 000 30 500 31 000 31 500 32 000 32 500
Σz

1000

2000

3000

4000

5000

Σr

Figure A.26. The loading path for test LP-TA23 in r-z stress
space

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Εr

1000

2000

3000

4000

5000

Σr

Figure A.27. Theσr /εr stress strain plot for test LP-TA23.
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Figure A.28. Theσz/εz stress strain plot for test LP-TA23.
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Figure A.29. Strain response envelope for the second loading
cycle for test LP-TA23.
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Figure A.30. Strain response envelope for the third loading cycle
for test LP-TA23.
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Figure A.31. Strain response envelope for the fourth loading
cycle for test LP-TA23.
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A.2.7 LP-TA24

This test was similar to LP-TA23, but performed at a slightlylower pressure. Summary plots for
this test may be found in Figs. A.32, A.33, and A.34.
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Figure A.32. The loading path for test LP-TA24 in r-z stress
space
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Figure A.33. Theσr /εr stress strain plot for test LP-TA24.
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Figure A.34. Theσz/εz stress strain plot for test LP-TA24.
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Figure A.35. Strain response envelope for the second loading
cycle for test LP-TA24.
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Figure A.36. Strain response envelope for the third loading cycle
for test LP-TA24.
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Figure A.37. Strain response envelope for the fourth loading
cycle for test LP-TA24.
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A.2.8 LP-TA25

This test followed the same net load path as LP-TA22, but did not change loading direction. This
test was included for comparison with the load paths with changes in loading direction. Summary
plots for this test may be found in Figs. A.38, A.39, and A.40.
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Figure A.38. The loading path for test LP-TA25 in r-z stress
space
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Figure A.39. Theσr /εr stress strain plot for test LP-TA25.
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Figure A.40. Theσz/εz stress strain plot for test LP-TA25.
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A.2.9 LP-TA26

This test used an initial confining pressure of 10 ksi, and then followed the net loading path with
no changes in the loading direction. Summary plots for this test may be found in Figs. A.41, A.42,
and A.43.
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Figure A.41. The loading path for test LP-TA26 in r-z stress
space
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Figure A.42. Theσr /εr stress strain plot for test LP-TA26.
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Figure A.43. Theσz/εz stress strain plot for test LP-TA26.
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A.2.10 LP-TA27

This test used an initial confining pressure of 10 ksi, then used then loaded to just below the yield
point, and began applying loading increments in several directions. The loading and unloading
increments both had a magnitude of 300 psi. Summary plots forthis test may be found in Figs.
A.44 through A.49 .
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Figure A.44. The loading path for test LP-TA27 in r-z stress
space
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Figure A.45. Theσr /εr stress strain plot for test LP-TA27.
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Figure A.46. Theσz/εz stress strain plot for test LP-TA27.
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Figure A.47. Strain response envelope for the second loading
cycle for test LP-TA27.
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Figure A.48. Strain response envelope for the third loading cycle
for test LP-TA27.
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Figure A.49. Strain response envelope for the fourth loading
cycle for test LP-TA27.
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A.2.11 CD2-LP02

This test was performed using a sample of Castlegate sandstone, and used an initial confining
pressure of 20 ksi. It then followed a loading path with anσr /σz angle of 110 degrees until the
sample failed. This test was used do find the yield point for use with test CG2-LP03. Summary
plots are shown in Figs. A.50 through A.52.
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Figure A.50. The loading path used for test CG2-LP02
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Figure A.51. Stress (σr) vs. strain (εr) plot for test CG2-LP02
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Figure A.52. Stress (σz) vs. strain (εz) plot for test CG2-LP02
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A.2.12 CG2-LP03

This test followed the same net path as CG2-LP02, but began applying loading increments in
multiple directions just before the yield limit was reached. Summary plots are found in Figs. A.53
through A.65.
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Figure A.53. The loading path used for test CG2-LP03
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Figure A.54. Stress (σr) vs. strain (εr) plot for test CG2-LP03
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Figure A.55. Stress (σz) vs. strain (εz) plot for test CG2-LP03
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Figure A.56. Strain response envelope for the second loading
cycle of test CG2-LP03.
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Figure A.57. Strain response envelope for the third loading cycle
of test CG2-LP03.
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Figure A.58. Strain response envelope for the fourth loading
cycle of test CG2-LP03.
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Figure A.59. Strain response envelope for the fifth loading cycle
of test CG2-LP03.
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Figure A.60. Strain response envelope for the sixth loading cycle
of test CG2-LP03.

-0.0003 -0.0002 -0.0001 0.0001 0.0002 0.0003
Εz
 

-0.0003

-0.0002

-0.0001

0.0001

0.0002

0.0003
Εr
 

Figure A.61. Strain response envelope for the seventh loading
cycle of test CG2-LP03.
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Figure A.62. Strain response envelope for the eighth loading
cycle of test CG2-LP03.
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Figure A.63. Strain response envelope for the ninth loading cycle
of test CG2-LP03.
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Figure A.64. Strain response envelope for the tenth loading cycle
of test CG2-LP03.
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Figure A.65. Strain response envelope for the eleventh loading
cycle of test CG2-LP03.
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