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Abstract

This report investigates the validity of several key asstimmg in classical plasticity theory re-
garding material response to changes in the loading direcifhree metals, two rock types, and
one ceramic were subjected to non-standard loading direstiand the resulting strain response
increments were displayed in Gudehus diagrams to illiestred approximation error of classical
plasticity theories. A rigorous mathematical framework fitting classical theories to the data,
thus quantifying the error, is provided. Further data asialyechniques are presented that allow
testing for the effect of changes in loading direction withbaving to use a new sample and for
inferring the yield normal and flow directions without hagito measure the yield surface. Though
the data are inconclusive, there is indication that classincrementally linear, plasticity theory
may be inadequate over a certain range of loading directibms range of loading directions also
coincides with loading directions that are known to prodagehysically inadmissible instability
for any nonassociative plasticity model.
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Chapter 1

Introduction

Predicting inelastic material response is key in several@&andia mission areas including pen-
etration and impact, vulnerability assessment, hydramarbservoir and porous media. Essential
to these predictions is the use of generalized plasticity damage models. Many problems of
practical importance induce significant changes in theif@pdirections. For example, in a pene-
tration problem, the material near the impact point firstezignces a nearly uniaxial strain loading
upon passage of the initial shock wave, but then the strasstsansitions toward simple shear as
the penetrator itself passes. Virtually every plasticitydel at Sandia (and elsewhere) relies on
unvalidated theories for predicting material responsehtnges in loading direction. However,
laboratory testing for parameterizing engineering ptistimodels is typically limited to unidi-
rectional axisymmetric compression, thus forcing gueskwo the development of constitutive
models to predict material response for deviations fronbcation test load directions. This un-
certainty in the physical foundations of the governing eiques must be eliminated via systematic
validation experiments. Without such validation, muchlalas cast on the results of any simula-
tion that uses a model to simulate load paths that significdetiate from the load paths used in
calibration testing. For example, rocks and rock-like mate often exhibit non-associativity of
the plastic flow direction when they are loaded in triaxiaingwession. Under classical plasticity
theory, the non-associative flow direction observed indhis calibration loading direction (triax-
ial compression) is then assumed — without proof — to applilitétoading directions. Suppose,
however, that (contrary to classical plasticity theoryd flow direction should actually vary with
the loading direction. How much error can be expected byantiglg the variation? To illustrate
sensitivity of simulation results to modeling uncertaimythe flow direction, Fig. 1.1 shows a
verification problem that was part of an ACTD inter-agency W&tudy. For prescribed Mohr-
Coulomb parameters, this problem prescribes a highly blristrain path for which the analytical
solution is known be the plane stress response shown by itledrange line in Fig. 1.1. The
dashed lines in that figure show that a small) (&hange in the flow directioM produces a large
("10%) change in the stress response — even inducing sgmifieviation from plane stress. This
sensitivity study suggests that large validation errordengeneral loading can be expected if the
classical assumption of a path-insensitive flow directgevien slightly inappropriate.

“Engineering plasticity models” are here defined to be thbs¢ are simple enough in their
structure, efficiency, and robustness to be practical fgelacale engineering applications. To date,
this means that engineering plasticity models are usuédgnpmenological and, for tractability,
often include simplifying assumptions (such as isotrojgt thave not been well justified in the
laboratory. More complicated approaches might apply firsteiples materials science [1] or

11
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Lode-normalized meridional and octahedral yield surface profiles Thick orange and thin black (overlaid) lines are the analytical and
(with normal N and four flow directions M). The central reference simulated plane-stress solution using the central reference flow
flow direction (middle of red cluster) and the strain path were direction (solid fill is the elastic domain). Blue and green dashed lines

desianed to give plane stress response. The multilier (6 are the results using the same prescribed strain path with only slightly
esig 9 plane§ Pl p ©) different flow directions (less than 2° error in M produces ~10% error in

transfo'rmsl the_ distorted ,h,exagor,‘ and, stress path 1o a circle for stress, even large excursions from plane stress conditions). The light
norma"za"on in the meridional view f:'-e-' converis to an grey dashed line is the deviatoric associativity solution (different from
equivalent Drucker-Prager space strictly for the purpose of the baseline analytical solution by orders of magnitude).
visualization).

Figure 1.1. Results of ACTD Mohr-Coulomb Verification Study

atomistic modeling [2] or mesoscale modeling [3] to explycaccount for microstructural aspects
such as grain boundary effects on dislocations, crack acidsion distributions obtained from
tomography, etc. [4]. However, even the advanced theoreesa@ exempt from validation, since
they also rely on numerous unproven assumptions. Althoglcdomputational overhead of these
more sophisticated theories often precludes their direetin engineering applications, they still
serve as valuable resources for improving predictions giraering plasticity theories in domains
for which experimental data are not available.

This report describes systematic laboratory investigataf the validity of some fundamental
assumptions that are common to virtually every engineguiasticity model. Of particular interest
is a need to determine material behavior for a particuladit@adirection that is known to theo-
retically admit a physically inadmissible instability tieé material is modeled usiramy classical,
non-associative, rate-independent, engineering pigstieeory. As discussed in detail later, the
unstable range of loading directions forms a “wedge” insgtrgpace (above yield but below the
flow surface) that is located far away from the probing dimettised in standard parameterization
testing. Therefore, the primary goal of our laboratory stigation is to probe material response
in or near this wedge. More broadly, the goals are (1) to desigxpensive methods for exploring
the effect of a variety of non-standard loading directiond ) to develop means of analyzing the
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data without introducing unnecessary constitutive assiomg.

Non-standard loading is also needed to investigate a pirexdiof some plasticity models for
rocks and ceramics that dilatate in compression (attrtbtiieopening of microcracks in shear)
actually strengthens the material in hydrostatic compoassThis result seems to contradict the
commonly held view that an increase in void space shouldedser the hydrostatic elastic limit
pressure. The concern is that efforts to reproduce a vertelihdata set (shear-enhanced dilatation)
might have resulted in a model that gives very poor predistimr changes in loading direction
from that state. This is just one example of a more broad ghten that engineering plastic-
ity models are typically designed to match unidirectionald®l parameterization tests, yet such
models repeatedly are non-predictive in more complicasdidation tests that usually involve far
more complicated changes in loading. Clearly, laboratesyitg for plasticity models needs to be
expanded to include a greater variety of loading directibegond the minimum needed to merely
parameterize the models.

Relative to simplistic plasticity models such as von Mise$resca theory, the somewhat more
realistic engineering plasticity models such as Johnsook@heory [5] and the Sandia GeoModel
[6], allow many more factors to alter the material resporsesuch models (as well as in simpler
models), the stress ratg)is assumed to be a function of the strain rafe ¢urrent state of stress
(0), and a set of internal state variableg (2, ...) that characterize the internal structure of the
material. The internal variables are themselftesctionalsof the loading history, giving rise to
path dependence. Setting aside the details of any particulédel, engineering plasticity theories
are typically written in the following basic incrementaliio:

o=(,0,N1,N2,...). (1.1)

Here, a superimposed dot may be regarded as an incremeantatie (where, for rate-independent
plasticity “time” is any monotonically increasing scalarpmeterizing the deformation path). In
laboratory work, it is often presumed that the roles of staa®d strain can be reversed in Eq. (1.1)
so that the stress increment is the controlled independerdble, while the strain increment is
the measured dependent variable. Such a view will be adaptar experimental investigations.
Most plasticity theories assume that there exists a swalaed yield function f) such that elastic
deformation occurs when

f(o,n1,n2...) <O. (1.2)

For isotropic plasticity models, the zeros of this functieme often plotted as an isosurface
(called the yield surface) in three-dimensional princgtagss space, as illustrated in Fig. (1.2).

This yield function is used to determine if elasticity thgor plasticity theory is used to de-
scribe a given deformation. This is done as follows:
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von Mises Linear Drucker-Prager

Mohr-Coulomb

Figure 1.2. Common isotropic yield surfaces. Von Mises and
Drucker-Prager models are often used for metals. Gursans-f
tion, and others like it, are used for porous media. Tresch an
Mohr-Coulomb models approximate the yield threshold faitlbr
media. Fossum’s model, and others like it, combine thegeres

to model realistic geological media.

f=0, 75-Ciuéa >0 Plastic
f=0, %Cijkl &1 =0 Neutral (1.3)
f=0, 75-GCiuéa <0 Elastic
f<O Elastic

whereCjjq are the components of the fourth-order elastic tangerfheti$ tensor. It is noted
that for the neutral case, plasticity theory and elastithgory will give the same result. Our
experimental data for the effect of loading changes will kaneined in this very broad context
that makes no reference to any particular engineeringipigstnodel.

Several other assumptions that are common in engineerasjigity will not be adopted in
this work. For example, the vast majority of (commonly usedgineering plasticity models pre-
sume material isotropy. While isotropy might be a reasamalssumption for the virgin material,
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it is not defensible under general deformation even in tastel regime. Neglect of elastically
induced anisotropy generally violates thermodynamicsyhijich is a prediction that itself merits
experimental investigation to support model revisionsdiastically induced anisotropy, or else
risk improper parameterization of dissipation in the ptaptrt of the model to compensate for
errors in the elastic part. Of course, induced anisotroxgected to be even more pronounced
under plastic loading, as is well known from the metal rglindustry [8, 9]. Constitutive mod-
elers are forced to assume persistent isotropy for sewegiabns: (1)lack of data (2) lack of time
or resources needed to develop solvable anisotropic gongeguations, and (3) lack of compu-
tational resources needed to solve the larger, more coatptic set of equations. Additionally,
many host codes are not prepared to handle anisotropicittivet models. Once, for example,
we found that the host code’s treatment of transmittingflow) boundary conditions implicitly
assumed material isotropy and was unstable (crashed witloinime steps) as soon as a simple
transversely isotropic material began to deform at the daon Also, the critical timestep built
into explicit time integrators is usually based on the agstion that there are only two elastic
constants (shear and bulk modulus), which is not correciiggotropic models.

Our experimental investigation will address the first negdjbantifying the extent of both
elastic and plastic induced anisotropy. The data will shiost the very framework of classical
plasticity is incomplete. However, the data analysis witlude error-minimizing methods for
projecting the observed material response into the framewbclassical isotropic engineering
plasticity theory. The magnitude of the residual in such@alysis is then a quantitative measure
of the approximation error associated with the use of atasgingineering plasticity models.

Even experimental work must necessarily introduce assongtbut those assumptions should
be validated in the experiments whenever it is possible teao For tractability, our labora-
tory investigations will involve purely axisymmetric load, and it will be assumed that the ma-
terial is initially either isotropic or transversely isopic so that we may also assume induced
anisotropy is, at worst, transversely isotropic. Natyrattdundant gaging is used to assess valid-
ity of this assumption during testing. Under general logdinhere stress and strain tensors are
six-dimensional because they have six independent compgr@mprehensive validation testing
of a classical plasticity theory would require measuringc86tinually evolving tangent stiffness
variables, which is well beyond the scope of any laboratfigrieto date. Axisymmetric loading,
on the other hand, involves two-dimensional represemtatid stress and strain (each constructing
the 6D tensors from two numbers: axial and lateral comp@)gettius reducing the number of
tangent stiffnesses to be measured in the laboratory downlyofour. Importantly, to quantify
the error associated with assumptions in classical engigeplasticity theory, our data reduction
allows for the possibility of “incrementally nonlinear pemnse”, for which a tangent tensor does
not even exist in the classical sense. The definition of mergal nonlinearity, along with the
mathematics of the dimensional reduction from 6D to 2D tehsmd methods for quantifying
error associated with classical plasticity theory areuised in the next chapter, after which the
experimental techniques and results are discussed.
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Chapter 2

Terminology and Mathematics

The basic function of a constitutive material model is torgifg evolving relationships between
stress ¢), strain €), and other variables that characterize the material.sitaple constitutive
models characterize the material state by very few varsalfi®r example, an elastic model pre-
sumes that the stress tensor depends only the strain tensor:

o=%(¢) (2.1)

Even in this case of elasticity, laboratory data are somegtigrroneously analyzed under an un-
necessary assumption of linearity that reduces Eq. (2.1) to

0ij = Gijui & (2.2)

whereGij are the components of the fourth-order elastic stiffnessae ! For tractability, data
might even be analyzed under the assumption that an elastlelris not only linear, but also that
the stiffness is isotropic, making Eq. (2.2) reduce eveth&urto

Sj=2Gy; and p=Kg (2.3)

where§; are the components of the stress deviaipare the components of the strain deviafor,
is the pressureg, is the volumetric strairk is the bulk modulus, an@ is the shear modulus. An
aim of the current work is to avoid these and similarly unmgkedonstitutive assumptions in the
analysis of the data.

Of course, for realistic materials, an assumption of lirgaf elastic response is not usually
adopted. If the functiot# in EqQ. (2.1) is nonlinear i, then its rate form is

Gij = Cijui & (2.4)
where
00jj
Civl — 2.5
i jkl dgkl ( )

LAll indices range from 1 to 3, and repeated subscripts indisammations from 1 to 3.

17



The fourth-order tensd;jy is the local tangent to the nonlinear function relatingssite strain. If
the tangent tensor is constant, then this result reducée tiiear form in Eq. 2.2. Otherwise, the
tangent stiffness tensor is a function of strain (equiviiyethe tangent tensor can be alternatively
written as a function of stress if the elastic relationshépween stress and strain is invertible to
express strain as a function of stress).

An assumption of elasticity (i.e., that stress is a difféigdie function of strain) ensures not
only the existence of the tangent stiffness, but it also gniaes that the tangent stiffnessnde-
pendent of the strain rateven though it varies with the strain. Stated mathemayicall

0 = 0(€) = There exists a tens@ such tha;j = Ciju & (2.6)

As is well known from the theory of exact differentials, hoxee the converse is false. For the
converse to be true, the right-hand side of Eqg. (2.6) mustupplemented with the additional
statement tha€ depends only o (not oné& or anything else) and, moreover, the equation on
the right-hand side must be integrable, which requit€g /d&rs = dGjrs /d&y. These additional
requirements are extremely difficult to detect from experial data. Specifically, suppose that it
is observed that a fourth-order ten¥oexists such that

Gij = Yijii & (2.7)

Does this imply thal is the same a€ in Eq. (2.4)? No, it might be that this tensérdepends

on more than just the strain. EvenYifdepends only on strain, Eq. (2.7) might not be integrable
for stress as a function of strain. In laboratory work, whaméy stress and strain increments are
measured, it might be possible to find the componentg,dfut it is impossible to know with
certainty the variables on whidhdepends under general loading. SupposeXitsgems to depend
on any number of “unknowable other variables,” but suppbatitis also known (or assumed) that
Y is independent of the strain rate. Then the relationshipin(E£7) is “incrementally linear.” On
the other hand, if th¥ tensor might possibly depend on the strain rate itself, themelationship
between stress and strain (and any number of other statbies) is “incrementally nonlinear.” In
the simpler case of a scalar (one-dimensional) stresgsafationship, incremental nonlinearity
simply implies that the local slope is discontinuous so tmet slope applies to loading & 0) and

a different slope applies to unloading € 0). Whereas in the one-dimensional case, there are only
two possible loading directions (forward or backward),hia two or three-dimensional case there
are an infinite number of possible loading directions.

A goal of this project is to minimize constitutive assumpsan data analysis in order to assess
validity of constitutive assumptions commonly made in @egiring plasticity theories. Specifi-
cally, in plasticity theory the stress rate is presumed texpressible in the form

(2.8)

P Cij & during elastic loading
"7\ Tijéa during plastic loading

18



whereC is called the elastic tangent stiffness, and the plastic tangent stiffness. This statement
of the basic structure of plasticity equations can be wriittethe form of Eq. (2.7) by taking

i during  elastic loadin
Yi = {C”k' g g (2.9)

Tiju  during plastic loading

In classical rate-independent plasticity, neitGevor T depends on the strain rate, but as discussed
above the determination of whether or not loading is elastplastic does depend on the strain rate
according to Eq. (1.3). Therefore, even classical plagtisincrementally nonlinear in the strictest
sense. However, classical plasticity theory is generatlyertheless referred to as incrementally
linear because it ipiecewisencrementally linear.

The laboratory investigations for this research seek terdeghe whether or not even the most
basic form of classical plasticity (piecewise incremelfitedarity) is a valid approximation. To be
consistent with an assumption of rate independence, theriexgntal investigations are limited
to very slow loading rates with hold periods between elastiwading cycles. (Even with hold
periods, some creep is recognized in the upcoming data, eahsfor quantifying the error of an
assumption of rate independence in classical plasticggrhwill not be addressed in this work.)

Regular Flow Rule

The vast majority of engineering plasticity models not oagsume that the strain rate can be
decomposed into elastic and plastic parts,

£=¢€°+€P, (2.10)

but they also invariably adopt‘aegular flow rule”, which presumes that only tireagnitudeof
the plastic strain rateP depends on the total strain ratewhereas thdirectionof the plastic strain
rate is determined purely from the material state, not froerate of change of state.

The direction of a tensok is defined by a tensor of unit magnitudgust as with a vector:

Aij = (2.11)

vV AmrAmn

where the term in the denominator is the magnitude of theotelsOf course, any tensor can be
decomposed multiplicatively into its magnitude times a temsor in its direction. When applied
to the plastic strain rate, this decomposition is

SIFJ) = Mij where A= EIF])SIFJ) Mij = EIF])/)\ (2.12)
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An ability to express the plastic strain rate in this form sloet imply a regular flow rule. To be
a regular flow rule, the tensdi must be independent of the total strain rate. A regular flae ru
states that the direction of the plastic strain rate tea8ds independent of the direction of the
total strain ratee. If in addition to a regular flow rule, it is also assumed thaitenial response is
rate independent, then it can be shown that equation (1cbnbes linear ire. Namely,

H(€,0,N1,N2,...) = Tij (0,N1,N2...) & (2.13)

whereTijq is the fourth-ordeiplastic tangent stiffness tensor. When written without explicitly
showing dependencies, this becomes simply

Gij = Tijki & (2.14)

Just as with the elasticity equations, such a formulati@aty simplifies the implementation
of the material model as compared to equation (1.1) becalsads to a linear system which is
solvable for increments in all variables. Each variablehentintegrated through time to update
the material state at each time step. Although most plastieodels rely on this assumption, very
little work has been done to assess its validity.

Dimensional reduction for axisymmetric loading

As mentioned in the introduction, the scope of our labosatovestigation is limited to axisym-
metic loading of a material that is, at most, transversatyragic. Then it may be reasonably
presumed (and verified through redundant gaging) that acgnsieorder tensor in the analysis
may be written in the form

An O O
Al=| 0 AL © (2.15)
0 0 A

where the subscripts “A” and “L” refer to axial and laterahgoonents. This may be written as a
linear combination otinit base tensors as

Ax 0 O 100 L [0o0o0
0 AL O |=(A)]0 0O +<\/_2AL)— 010 (2.16)
0 0 A 000 V210 0 1

The normalization of the base tensors allows reducing thergdly 6-dimensional entity (a fully-
populated symmetric tensor [A]) to a simple two-dimenslomator having components, and
V/2A, . The introduction of tha/2 ensures that the ordinary magnitude of ¢ieetor,

{ \/ézLAL } : (2.17)
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is the same as the magnitude of the tensor. For this reasotwehvalues A and+/2A, ) are said
to be isomorphic to stress space. They are Euclidean catedinvithin a two-dimensional plane
that “cuts through” six-dimensional tensor space. Witk teduction in dimension, Eq. (2.14) then
reduces to simply

BEEEIH

oL Tia T L

Whereas the above decomposition into axial and lateral coewts is most natural for the lab-
oratory control, data analysis that aims to draw connestieith conventional plasticity theories
is better served by introducing a change of variables. Fpraisymmetric tensor [A] defined by
its isomorphic componentg\f and+/2A, ), an alternative pair of isomorphic components, corre-
sponding to an orthogonal basis rotation in the same twadgional space, is given by

{//ﬂ:%[iﬁ ?H}z&] (2.19)

With this change of variables, Eq. (2.16) can be written as@uivalent expansion in terms of a
different pair of unit base tensors as

An 0 0 . [100 L [2 0 o0
0 AL O |=(A)==|010|+A)==|0-1 0 (2.20)
0 0 A V3001 V6log o -1

which illustrates that these two alternative coordinaesothpose axisymmetric tensors into their
isotropic and deviatoric parts.

These alternative axisymmetric measures are subscriptednt “Z’ because they can be
shown to correspond to the cylindrical coordinates thatreterally implied in the symmetries
of Fig. 1.2. For axisymmetric loading the angular coordiatlled the Lode angle, is fixed on the
compressive meridian. Therefore, becansé.ode coordinates are isomorphic to stress space, our
upcoming plots ire-r stress space ageometricallyaccurate (same lengths and angles) depictions
of a “side view” of the yield surfaces in Fig. 1.2. It is thisatere, as well as inheritance of tensor
properties, such as symmetries and eigensystems of thertiatensor, that recommends isomor-
phic tensor measures over perhaps more (initially) inteigir familiar coordinate pairs. The Lode
axial coordinateg; is the hydrostatic component of the stress, and it is reledgutessurep by
0, = v/3p. The Lode radiug; is a measure of equivalent shear stress, and it is relatdueto t
conventional measure of shear stragdyy oy = q\/VZ. Thus, not only may a plot af; vs. oy
be regarded as a “side view” of an isotropic yield surfacehsaiplot may be also seen as loosely
depicting shear strength vs. pressure, with the only diffee being constant scaling of the axes.
The Lode coordinates represent decomposition of the tantmisotropic and deviatoric parts,
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which reveals structure in simple idealized solid mechatheories. For example, with the Lode
measures for axisymmetric problems, the isotropic Hooka's of Eq. (2.3) becomes simply

o;| |[3K 0 &
5]-1% &](2]
Of course, the general form for incremental plasticity mees
b'z TZZ TZI‘ éZ
2| = ; 2.22
[Gr} {Trz Trr}{gr] ( )

For simplicity, we may write this in a more compact notatisrsamplyd = T&, where it must be
understood from context thatandée are 2x1 vectors, whil& is a 2x2 matrix.

Our analysis of laboratory data witlot presume that a classical (incrementally linear) plastic
tangent stiffness tensor even exists. Suppose that inatalmenlinearity is observed in the data,
but only incrementally linear plasticity models are avialdain our finite element codes. Then a
short-term workaround is needed while awaiting model enbarents to be delivered by the consti-
tutive modelers, which could take many years since theréeargalidated models for incremental
nonlinearity. Arational strategy for interim use of existing classical plasticitpdaels would set
the incrementally linear parameters to values that mirereizor with observed incrementally non-
linear data. In analogous problems involving scalars éadtof tensors), the rational approach is
to use a least squares fit to nonlinear data until a nonlineaems available. In our more general
case for which the data consists of a collection of stimucorsand their corresponding response
vectors an unweighted least squares best linear fit to the data @nalat as follows: (1)place the
stimulus vectors into columns of a matii®, (2)place the corresponding response vectors into
columns of a matri¥R], and (3)evaluate the best fit linear transformation mdtrx= [R][§(Y,
where the superscript “(-1)” denotes the pseudo-inverssléble in most numerical linear algebra
packages, and required in data analysis becgglsegenerally non-square). The pseudoinverse is
an ordinary inverse if there are exactly the same numbeneélly independent stimulus vectors
as the dimension of the space. The residual error of the &ppation is quantified by the norm
of [R] — [L][§. Of course, aveightedlinear regression may be used if greater accuracy for par-
ticular loading directions is desired. Incidentally, thgperiments described in this report are all
stress controlled. Therefore, the “stimulus” mati$ holds the stress increment vectors, and the
“response” matriXR] holds the measured strain increment vectors (interpotatéte current ma-
terial state, as described later). Therefore,[thenatrix computed in our data analysis is actually
the tangentompliance[L] = [T] L.

Visualization of linear transformations

As mentioned in the previous section, analysis of out laiooyaexperiments will make no as-
sumptions that the material is incrementally linear or @getropic. We will simply plot the strain
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increment (response) vectors resulting from stress inengifstimulus) vectors that are in various
directions, but each of equal length. Because the stimdavs are all of equal length, plotting
them joined at the tails produces a set of vectors whosedips & circle, as illustrated in Fig. 2.1.
Doing the same type of tail-to-tail plot for the responsetoecallows direct visualization of the
degree to which the transformation from stress incremenggrain increments is linear. A neces-
sary condition for a transformation to be linear is that thgoonse envelope must form an ellipse,
as in 2.1(b). This is not a sufficient condition, as seen in Eifjy(d); a linear transform has the ap-
pearance of a uniform stretching of the stimulus disk, gigsn combination with some rotation.
An example of a more “ordinary” nonlinear transformatiosf®wn in Fig. 2.1(c).

Incidentally, the plots in Fig. 2.1 are superior to Reynatyghs [10] because a Reynolds glyph
fails to convey information about rotation and, as mentigriedoes not depict irregular vector
distributions on the ellipse (or ellipsoid in 3D). Reynolglgphs for stress-strain transformations
are often referred to as “Gudehus” diagrams [11].

output (response) vectors
for a linear transformation

Input (stimulus) vectors

(b)

output (response) vectors

output (response) vectors nonlinear transformation
nonlinear transformation

Figure 2.1. Visualization of vector transformations.
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Data interpolation to a single state

For stress-controlled axisymmetric loading, inferringiacremental relationship between stress
and strain requires minimumof two stress (stimulus) increments and the correspondieg-m
sured strain (response) increments. Far more than two Istngstress increment) directions are
required to detect incremental nonlinearity. Importarttig relationship between stress and strain
increments is anaterial state functior it represents how the material would respond to any given
stimulusat the current stateHowever, this state function is also amolvingstate function, which
means the act of measuring material response to any ondwssimili generally irreversibly change
the material, making it impossible to know with certaintyshthe materialvould have responded
to some other stimulus. Let it be emphasized that identicaemnal states mean identical materi-
als, under identical stress states, and identical loadstgries. In practice such a measurement
is impossible because the act of inelastically deformiregrttaterial to measure the response for
the first stimulus irreversibly changes the material, mgktrimpossible to know with certainty
what the material respons®uld have beeif the material had been instead loaded in a different
direction. To answer that question, one would have to betahbieanufacture ardenticalsample
and load it through aidentical path undeiidenticalambient conditions in order to measure the
response to any new stimulus. Obviously, attaining idahtionditions for a second measurement
is impossible from a practical standpoint as well becauseadgbility in samples and loading
procedures.

Two methods have been used to overcome these difficulties.nidst common method used
to assess the validity of a regular flow rule is through theafs#iscrete element method (DEM)
simulations or other computational schemes. The advartftigs method is that it is a simple
matter to create identical material states in a computeulsition. Several simulations may be
performed with the same initial conditions and differerading directions. One such study by
Tamagnini [12] compared such “stress probe” DEM simulaianth various constitutive models.
These simulations were meant to model a soil specimen. Tpeclimien” geometry used was
a cube of material whose faces were aligned with the prih@frass/strain directions. These
simulations were performed by loading the material throagtrescribed axisymmetric loading
path as shown in Fig. (2.2). The loading path consisted ofdstdtic compression to 100 kPa,
then triaxial compression until the deviatoric stress hedc300 kPa, then unloading along the
same path until the deviatoric stress was 100 kPa. Two palotyy the path were selected as
reference states for stress probing. The first pBimtas on the triaxial loading path when the
deviatoric stress was 100 kPa. The second pBinivas at the same stress state, only on the
unloading portion of the path.

Beginning at these two reference states, small stressmeeres (probes) were applied in several
directions. For each loading direction the simulation waggrmed once with energy dissipation
mechanisms active, and once with no energy dissipatiowato The particle displacements with
the energy dissipation mechanisms active were used tolatddine total strain increment, while
the displacements that occurred when no energy dissipaienallowed were used to calculate
the elastic strain increments. The stress probe directia@re constrained to the axisymmetric
plane @x = 0y) and the deviatoric plane + oy + 0; = 0). Stated differently, the first set of tests,
like ours, held the Lode angle constant. Unlike ours, theseéset of tests held the pressure (or,
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Figure 2.2. Triaxial compression load path used in DEM sim-
ulations performed by Tamagnini. Heggs the equivalent shear
stress, ang is the mean stress. Alsis the strain in the z(axial)-
direction, anck, is the volumetric strain. The points at which stress
probes were applied are labelBdandB'. (Courtesy of C. Tam-
agnini)

equivalently, thez Lode coordinate) fixed, which corresponds to an octahedkakporthogonal to
the meridional plane used in the first set of tests.

The results of this study are displayed using incrementalrstesponse envelopes. These
envelopes represent the unit circle in stress space ( agirfZ8)) mapped to strain space. They
provide a convenient way of visualizing material responsgure (2.3) illustrates the response
in the axisymmetric plane while at the virgin state that tselad B in Fig. (2.2). Notice that the
plastic strain response envelope is a single line. This m#zat the direction of plastic strain is
independent of loading direction, indicating a regular fiae. In other words no matter what
stress increment is applied, the directione8fis fixed (only its magnitude depends on the stress
increment). Applying the same stress probes at the &ata the unloading leg produced the
strain response envelope shown in Fig. (2.4). This stranelepe looks much like the one from
virgin state B, except that plastic strain increments wdrgeoved in the unloading directions as
well as loading directions. Classical plasticity theoryulkbpredict an entirely elastic response
at this point since it lies within the now expanded yield aod. Aside from this disagreement
with classical plasticity theory, these probes seem to esigipat a regular flow rule is in fact a
valid assumption. However, the results from the stressgwab the deviatoric plane are quite
different. Figure (2.5) illustrates the strain responsestpe at virgin state B for stress probes in
the deviatoric plane.
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Figure 2.3. Results of Tamagnini's DEM stress probe simula-
tions. A set of axisymmetric stress increments represebyed
unit circle in stress space (left), and the resulting stirsénements
mapped to strain space (right).

The strain response envelope at material sBitevas similar to that at state B. The strain
response envelope shows that the direction of plastiawstias a strong dependence on the loading
direction. This indicates an irregular flow rule. Other s&sd13, 14] have had similar results.
The major drawback to these DEM simulations is that the satris themselves rely on many
unvalidated assumptions.

Another method that has been used to study the validity ofjalae flow rule is to perform
stress probing experiments in the laboratory. One sucly 4iif] fabricated a set of nominally
identical samples composed of sand. Just as with the DEMN,st#adh sample was loaded though
a specified axisymmetric loading path to a particular painstress space. After reaching the
desired stress state, a small stress increment was apihiédreversed. The strain that remained
after the unloading was assumed to be the plastic straienment. This process was repeated
with stress increments in a variety of directions, usingfeeint sample each time. Since these
tests were performed in a triaxial compression fixture, @ding increments were constrained
to the axisymmetric meridian. For stress states near &ilarregular flow rule was observed.
However, for stress states near the hydrostat, the direcfithe plastic strain increment depended
strongly on the loading direction. The author was quick tmpout that because of the small strain
increments for probes near the hydrostat the experimenia was also greater in this region.
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Figure 2.4. Strain response envelope for axisymmetric stress
probes at stress state B’ from Tamagnini’'s DEM simulations.
(Courtesy of C. Tamagnini)

Another study by Royis [16] had similar findings. While thiygé of testing has yielded some
very interesting and valuable results, the results depernti@fabrication of “identical” samples.
The methods they used were specific to soil specimens, and roteasily be extended to other
engineering materials.

These previous studies cast some doubt on the validity ofjalae flow rule. Below, we
propose an alternative method for studying the validity oégular flow rule which may be more
straightforward than the methods discussed above. Theopeopnew approach is premised on
certain interpolation assumptions that will rely on thesevpus studies for validation. After
discussing additional assumptions, the details of thidhwowetvill be explained.

Non-Associated Flow Rule

Accepting the assumption of a regular flow rule requires thextion of the plastic strain rate to be
defined for all states of stress where inelastic deformagipossible. Here we will assume that the
yield function is differentiable, and therefore the yieldface has no vertices. This assumption is
adopted not because it is necessarily true, but becausedhefghis study is to determine whether
or not models that make this assumption are capable of beitogtRe data.
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Figure 2.5. Results of Tamagnini's DEM stress probe simula-
tions. A set of deviatoric stress increments represented it
circle in stress space (left), and the resulting strainements
mapped to strain space (right). (Courtesy of C. Tamagnini)

Drucker [17, 18] investigated the requirements that stgiplaced upon the direction of the
plastic strain rate. The analysis begins with a unit voluhmaterial in which there is a homo-
geneous state of stress and strain. An external agency pipdiesa stress increment which loads
the material in such a way that the stress state lies on the sueface. The external agency then
applies a small stress increment directed outward fromitdd gurface. The external agency then
releases the small stress increment, and returns the staésgo the initial state. Drucker asserted
that stability requires that positive work be done by theeexdl agency during the application of
the stress increments, and that the net work performed bgxteznal agency over the cycle of
application and removal of the stress increments be zerositige. With these two requirements
it can be shown that the plastic strain rate must be norméldyield surface. The resulting flow
rule is called an associated flow rule and is given by:

of

=

where A is the magnitude of the plastic strain rate. For materialesehyield strength has a
strong dependence on hydrostatic pressure, the normae tgeld surface will have a significant
dilatational component. It has been widely reported thasfmh materials, an associated flow rule
over predicts plastic dilatation [19, 20, 14]. To remedysthroblem, a non-associated flow rule
is often employed. This type of flow rule uses a separate floni@l functiong to define the

28



plastic strain rate direction:

99
sp_ ) 00 (2.24)

Non-associated flow rules appear to better predict plagttation under monotonic loading.
However, as indicated by Drucker, models based on such a ti@vsuffer from instability for
certain boundary value problems [17, 21, 22, 23, 24]. Antaaltal potentially problematic aspect
of (2.24) is that, unlike (2.23) which is evaluated only whes 0 and therefore giving the normal
to the yield surface, equation (2.24) is typically evalda#t stress states for whiah=# 0 and
therefore there is no corresponding notion of a flow surface.

Sandler and Rubin [21] built upon Drucker’'s work by demoatstlg a connection between
Drucker’s instability and non-uniqueness in applicatiohgte independent plasticity to dynamic
problems. Sandler and Rubin concluded with a recommenutiet rate dependence is essential
to preventing the unstable or non-unique results. Like ReucSandler and Rubin premised their
analysis on the assumption of a regular flow rule. Later P&3] confirmed Sandler and Rubin’s
analytical solution and demonstrated similar results wifimite element and analytical case study.
The example problem consisted of a semi-infinite medium waithnitial stress state lying on a
Drucker-Prager yield surface, with a non-associated flde/as illustrated in Fig. (2.6).

A small disturbance is applied which causes a wave to prapafeough the material. The
disturbance was chosen so that the trial stress incremsra pasitive inner product with the yield
normal, but a negative inner product with the flow potent@imnal as illustrated in Fig. (2.7). The
region of stress space that has this property is known asahé!&-Rubin wedge.

It was shown that with this disturbance, the plastic waveedps faster than the elastic wave
speed. The fact that classical non-associative plasaditys certain plastic waves to travel faster
than elastic waves has also been independently confirmedadnnBn [25], who showed that ev-
ery ordering of plastic wave speeds relative to elastic wspeeds is possible, depending on the
details of the nonassociativity. Moreover, Brannon shotied there are only two classes of non-
associativity (marked regions A and F in Fig. 2 of [25]) forialnthe plastic wave speeds are
ensured to be always slower than the elastic longitudinakvepeed. In short, this possibility of
plastic waves moving faster than elastic waves is not lidnitethe idealization of Drucker-Prager
models; any nonassociative model admits this possibilitys causes the loading and unloading
ramps to separate and the pulse width to increase with timso #e region between the two
ramps, which initially consists of a single point, opens nfo ia finite region. There exists a two-
parameter family of non-unique solutions in this regiorgufe (2.8) illustrates possible analytical
solutions to this problem as found by Sandler, Rubin andi?uc

As shown in Fig. (2.8) there are solutions for which the wawgktude grows with time. In
the limit of small disturbances, this implies spontaneowdiom from a quiescent state, clearly
a troubling possibility. Pucik also explored this nongqureéness and instability in the context of
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Figure 2.6. Semi-infinite solid with initial stress state placing it
on the Ducker-Prager yield surface. The perturbation igydesl
such that it loads the material into the Sandler-Rubin we(feig-
ure from unpublished work of T.A. Putik [23])

finite-element simulations. Pucik discovered that the-noigueness and instability may show up
in a finite-element simulation, but they are often difficoltliscern in a complex problem since the
instabilities appear to grow linearly with time rather thetponentially. The non-uniqueness was
demonstrated by slightly varying the initial positions bétnodes. Changing the initial positions
by a distance on the order of the round-off error created dt@mhanges in the numerical solution.
Some of these solutions are shown in Fig. (2.9).

Effect of Triaxial Compression on Hydrostatic Limit

An additional assumption that is investigated involvesdfiect of triaxial compression loading on

the hydrostatic yield limit for porous materials. As mental in the introduction the yield function

is permitted to depend upon the loading history. This octiursugh hardening (or softening,

which we regard as negative hardening). Engineering mddelsardening usually support either
kinematic or isotropic hardening. Kinematic hardeningpirres the translation of the yield surface
in stress space, whereas isotropic hardening involvesxpansion of the yield surface. This

report will focus on some assumptions regarding how thelysatface expands through isotropic
hardening that is usually attributed to pore collapse.
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Figure 2.7. The yield surface and plastic potential with the
Sandler-Rubin wedge illustrated. (Figure from unpubliskerk
of T.A. Pucik [23])

Porous materials may undergo inelastic deformation (pollagse) due to purely hydrostatic
loading. For this reason the yield surface for these masemast have a “cap” on the hydrostatic
axis. These materials also typically exhibit considerdidedening, which is often assumed to
be isotropic in nature. In some models, this causes the “ta@gkpand outward as a material
undergoes shear loading, effectively increasing the ysélength of the material in hydrostatic
compression. In this study we seek to asses the validity istieg models which predict this
increase in hydrostatic yield strength due to shear loading
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Figure 2.8. Possible analytical solutions to the example problem
of Fig. 2.6 (derived by Pucik [23]). Pucik's analyticallstion re-
sulted in a family of solutions with two free parametevgy @nd
0p). Each set of plots represents a different choice for the fre
parameter,, as labeled. The plots on the left show a propagat-
ing triangular stress pulse, while the plots on the rightsitioe
corresponding velocity profiles.
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Chapter 3

Axisymmetric Plasticity

The validation method presented in this paper analyzegmaxetric test data in the framework of
classical plasticity theory. The first step in presenting thethod will be to simplify the governing
equations of classical plasticity theory for the axisynmicatase. For the general case, the plastic
tangent stiffness tensayj may be written in terms of the elastic tangent stiffnessdaeBgy , the
yield and flow potential function$ andg, and the ensemble hardening moduwtuas [26]:

1
Tiji = Eijw — n i Qui (3.1)
Rj = Eijk M (3.2)
Qul = ExiopNop (3.3)
J9
My = ——22 (3.4)
99 99
00y 0 0yw
of
Ny = L — (3.5)
of of
0Oy 0 Oyw
n =R;jNj+H (3.6)

Yield functions for most materials have some degree of syimnadout the hydrostatic [111]
axis. Because of this symmetry, it is often more convenieekpress plasticity equations in terms
of a coordinate system aligned with the hydrostat. In thi@rewe will make use of “Lode” coor-
dinates which represent a cylindrical coordinate systeth thie z-axis aligned with the hydrostat.
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The unique feature of this coordinate system is that it isx@gohic to principal stress space, mean-
ing that angles and lengths are preserved when transforfrangprincipal stress space to Lode

coordinate space. This allows geometrically accuratespbthe yield surface and incremental

vectors to be constructed in a lower dimensional space. Dae koordinates may be found from

the Cauchy stress tensor using the following equations [26]

0, = Lo

V3
a= |3 (3.7)

whereSis the stress deviator, ar®ls a unit tensor in the direction of the stress deviator.

Just as with a traditional cylindrical coordinate systers,also define base “vectors” (in this
case, second order tensors) associated with each co@ direquation (3.7) [26]:

I I
E = _— = —=
“

Er:

»
W

(3.8)

whereSis a unit tensor in the direction of the stress devi&aand| is the identity tensor. Using
these coordinates under axisymmetric loading, the Cautthgsstensor may be decomposed as
follows:

g = Gr Er + GZEZ (39)

If the material is assumed to be either isotropic or trarselgrisotropic, the strain tensor may
also be decomposed in the same manner by substituting tia stnsor for the Cauchy stress
tensor in equation (3.7):

&= Er Er + SZEZ (310)

Using these relations, it can be shown that for isotropicemiats under axisymmetric loading,
Hooke’s law can be written in matrix notation as:

Oy 2G O &
BEGHIH
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whereG is the tangent shear modulus afds the tangent bulk modulus. The<2 matrix above
is a representation of the elastic tangent stiffness temsed in equation (3.1). Under the same

conditions, the plastic tangent stiffness in (3.1) may dlssimplified into a 2 2 matrix as fol-
lows:

T= E—%P@Q (3.12)
where,

o =% x| | .13

8; } = { 2(? 3?< } { m; (3.14)

n=P-N+H (3.15)

and the subscriptsandzindicate the components in the corresponding Lode coarglafieections.
We have now reduced the plastic tangent stiffness down to2rdatrix representation for the case
of an isotropic material under axisymmetric loading whislassumed to obey classical plasticity
theory. Since this reduces the number of independent coempefT from 81 to 4, this greatly
simplifies the task of experimentally measuring the plastigent stiffness tensor.
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Chapter 4

Methodology

Flow Rule Validation

To calculate the four components of a tensor such,age require two independent sets of vectors
related by that tensor. For the case of the plastic tangiimests tensor, this means two indepen-
dent strain increment vectors, and the correspondingsstieeement vectors. Sindeis a function

of the stress state and loading history, these stress aaid stcrements must occur at the same
stress state and point in the loading history. How theseemental vectors are obtained will be
discussed later. First we describe the process of solvinthiocomponents of the tangent stiff-
ness tensor given the independent sets of vectors relatid3yppose we have two sets of stress
increments @y, d»), and strain incrementgy, &) related by the same plastic tangent stiffness
tensor:

O1r Tin T2 || &

: = ; 4.1
{Ulz] {Tzl TZZ}{&Z} (4.1)

and

Oor Tir T2 || &

; = . 4.2
{Uzz} {T21 Tzz}{szz} (4.2)

The two equations above may be combined into a single majtiateon:

er C:72r | T T2 <:‘:1r :fizr (4.3)
01z 02 To1 T2 &1z &2 '

where the subscripts 1 and 2 indicate the first and secondn&et The components &fcan be
found by multiplying both sides of equation (4.3) by the irseeof the strain matrix:

. . . . -1
Tin T2 | _ | 01 Or2 || &1 &2 (4.4)
To1 T2z Oan Oz || &a &2 '
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If there were more than two independent stress/strainmment sets related by the same tensor,
the strain and strain rate matrices in equation (4.3) woatde square. A pseudo-inverse opera-
tion could be used in equation (4.4) instead of the invergain. This would yield the tensor
which best fits the vector data.

Obtaining two independent stress/strain increments atdh®ee material state is not trivial. It is
to avoid this problem that most studies of this nature turcaimputational methods, which allow
this to be done easily. As discussed above, most experihgnties have sought to overcome
this problem by preparing a set of nominally identical spesms and loading them each through
identical load paths, then applying a different loading@meent to each specimen. Valuable data
have been obtained using this method, which will serve adidateon measure for the current
study. To eliminate the need for “identical” samples, thehnod described in this report allows
independent loading increments to be obtained at the saate fsbm a single specimen using
cyclically applied loading increments and an interpolascheme.

Or “/\
A v | doa, deas

Oz

v

Figure 4.1. A simple cyclically applied incremental loading.
Solid vector lines indicate stress vectors, dotted vedi@slin-
dicate strain vectors.

This concept is illustrated in Figure 4.1, where the cytlioad begins at an initial material
state denoted by;. An incremental stress loading vectiwoa is then applied taking the material
state toyr. Then, a different stress loading vectlwg is applied, taking the material stategs.
Finally, the incremental loading vectdioa is applied again, this time beginning from material
states. In each case, the incremental strain vector is measuredar&/@aow left with three
stress/strain incremental vector sets at three differeénal states. If we wish to find the tangent
stiffness tensor at material stape, we need to know what the strain response vector would have
been had we applied the loading vecttm, at material statay,. While we do not have this
information, we do know what the strain response vectoresponding taloa was immediately
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before, and immediately after material stgte It is assumed that interpolation may be used with
these two pieces of information to infer what the strain oese would have beemt material
statey, if the loading vectordoa would have been applied at that point. In the limit of small
loading increments this assumption is valid if the matecf@nges in a continuous manner with
the state variables. The material could change disconisiy@s a result of vertices in the yield
function, phase transformations, and other such sourdes.validity of this assumption will be
assessed by comparing the results of this analysis withestwhich have used other methods and
assumptions. With this interpolated strain response vaatowill have two independent loading
vectors, and the corresponding strain vectors at the sarteriaiastate. This is sufficient to find
the components of the tangent stiffness tensor using equgti4).

In practice, a slightly more complicated incremental logdtycle has been used. Rather than
only using two independent loading directions, four haverbesed. Unloading increments have
been included in the cycle, to allow the potentially evotyatastic tangent stiffness to be calculated
in a similar manner.

Knowing the plastic and elastic tangent stiffness tensaltsalow M andN to be calculated
directly from the experimental data. To do this we solve éigug3.12) for the second term on the
right, which we will labelA:

A:E—T:%P@Q (4.5)

The rows ofA should be scalar multiples € and the columns should be scalar multiples of
P. To find the directions oP and Q we perform a polar decomposition 8f To perform this
decomposition we define:

Uz = AT . A
= (QuP)-(P®Q) (4.6)
= (P-P)Q®Q

As shown,U? will be a scalar multiple of the dya® ® Q. U2 should then have one large
eigenvalue and one small eigenvalue. The eigenvectoriassdevith the large eigenvalue will be
in the direction ofQ. Similarly we define:

V2 = A-AT
(P®Q)-(Q®P) (4.7)
= (Q-QP&P

Again, the eigenvector associated with the largest eideevaf V2 will be in the direction of
P. We now use the definitions &fandQ to write:

P* = aE-M (4.8)
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Q" = BE-N (4.9)

wherea andf are some unknown scalars, aAtdandQ* are scalar multiples d® andQ respec-
tively. SinceE is known from the unloading vectors, equations (3.2) an8)(®ay be solved for
the directions oM andN:

wherex is again used to indicate some scalar multiple of a variallech may then be used to
generate a unit vector in the direction of the tensor.

Cap Model Hardening Validation

To assess the validity of an increase in hydrostatic yie&hgfth due to inelastic shear deformation,
a series of modified triaxial compression load paths has thesigned. The first of these load paths
consists of purely hydrostatic loading, with small unleapincrements applied periodically. This
test is performed to identify the level of hydrostatic laaglwhere inelastic deformation occurs.
This will be the initial location of the “cap” of the yield sface. The second test is a traditional
triaxial compression test. In this test the sample is lodugttostatically to a point just below
the cap identified in the first test. Then the lateral stresld constant while the axial stress is
monotonically increased until the material fails. As théahstress is increased, the volumetric
strain is monitored. The volumetric strain will initiallyedrease (decrease in volume), then will
reach a point where the sample volume begins to increase.

Figure 4.2 illustrates the third load path through stresgep The path is identical to the
traditional triaxial compression path (load path 2), exdbat after the onset of dilatation, the
triaxial compression leg is stopped. The specimen is retlita a state of pure hydrostatic stress
via a path with a constant mean stress. The specimen is tadedan hydrostatic compression
to the limits of the machine capacity. As Figure 4.2 illustg according to some models, the
shear loading should greatly increase the hydrostatid wgength. The proposed validation load
path tests this by first inelastically loading in shear toseatine desired hardening, then loading in
hydrostatic compression to see if the hydrostatic yieldrggth is significantly different than that
of a virgin sample.
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Load Path 2

\

Load Path 3
Evolving Yield Surface

Y
\J

Figure 4.2. Sketch of a triaxial compression test (bold arrow)
with a corresponding unvalidated yield surface evolutivat pre-
dicts outward motion of the cap even after onset of dilatatia
the theoretical model under investigation, the onset cftalilon
corresponds to the point where the load path crosses ovpetie
point of the evolving cap.
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Chapter 5

Testing Procedure

Sample Preparation

Three metals, a ceramic and a rock were tested as part ottllg Sample sizes are listed in the
test list. All samples were prepared into the shape of a digbtilar cylinder. The dimensions of all

samples were nominally length-to-diameter ratios of 2:feasmmended for uniaxial and triaxial
compression tests (ASTM D4534). The metals and ceramic dedieered in rods and their outer
diameter was used as is, except that it was cleaned and oecséigttly. The rods were cut to

length using a saw. The rock samples were cored from blocksosf perpendicular to bedding.

The ends of all samples were ground flat and parallel usingfacgigrinder.

The metal and ceramic samples were mounted with strain gagesord axial and lateral
strains as shown in Fig. (5.1). Two (at I8itervals) or three (at 120intervals) strain gage
pairs were mounted at the middle of each specimen, eachqasisting of an axial and a lateral
strain gage. The gages are mounted with a thin layer of quickg epoxy and are placed by
hand on the specimen. The redundancy in strain measuremastdone in order to assess the
potential for specimen/loading column alignment, asymmynietthe loading, etc. The strain gages
are 2% foil gages with a resolution of Jtrains. For each strain gage pair, the axial strain gage
(parallel to the long axis of the sample) and lateral straigeg(perpendicular to the long axis of
the sample) were used to measure axial and lateral strasg®ectively. The redundancy of strain
gage measurements was used to best quantify strains mezasiveell as to determine if there was
sample misalignment and, in some cases, to account for f@ssindividual gage output during a
test.

Metal specimens were coated with paint-on urethane to grtite strain gages and to hold
the sample and the end caps together. An attempt was madaitoize sample misalignment by
inserting a spherical interface at top platen.

Prepared rock specimens (Fig. 5.2) were first covered withglesply of thin (.005 in) an-
nealed copper (Fig. 5.3) to prevent the confining pressuré flsopar) from contacting and/or
entering the pore space of the specimen when it was placée jpressure vessel. The jacket was
fabricated by winding it around the specimen and solderisgah along the specimen axis. Liquid
polyurethane was applied to the end of the copper jacketapped over the two cylindrical steel
end caps that were placed on either end of the specimen. Rogcthis assembly was mounted in
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Figure 5.1. Strain gaged aluminum specimens

a lathe and slowly rotated around its central axis to maintaiform thickness of the polyurethane
lapping membrane.

When the urethane had cured, the sample was placed in a presssel and pressurized
externally using line air pressure. This pressurizati@sped the copper jacket snuggly against the
rock. Next, on opposing sides of the sample at the axial midpa locator button was soldered
(Fig. 5.4).

Instead of strain gages, rock test specimens were instiechevith electronic deformation
transducers before they were placed in the pressure vesseinaly. Radial deformation was
measured as the point measurement across the specimeneatiggna linear variable differential
transformer (LVDT). The resolution of the LVDTs used is @MA0 The radial LVDT is spring
loaded and is positioned on the buttons attached to the safffilg. 5.4). Axial deformation was
measured by two linear variable differential transform&kéDTs) mounted to the specimen end
caps across the specimen length. The displacement recartleel average from the two gages.
The change in this electrical output versus displacemestastablished prior to testing through
calibration.

46



Figure 5.2. Right circular cylinder of Castlegate sandstone.

Test Method

Strength and deformational properties of pressure-geasitaterials such as rock are commonly
determined using the quasi-static triaxial compressist ta using this technique, cylindrical test
specimens are initially subjected to an all-around press$or confining pressure) and then are
loaded to failure by applying compressive force to the erideaspecimens (i.e., parallel to their
central axes). The difference between the axial load (ssgckin terms of stress) at failure and
the confining pressure applied to the sides of the speciméefiised as the confined compressive
strength. The effect of confining pressure on compressreagth is evaluated by conducting a
series of tests at different confining pressures spannimgahge of interest. Test specimens are
normally instrumented (described above) to measure axditadial deformations (strains) during
the application of both the confining pressure (i.e., hy@tisloading) and axial load (i.e., shear
loading). Stress-strain data are useful in evaluatingqaar mechanical properties such as elastic
moduli.

Figure 5.5 shows the computer-controlled servohydraebtirig system used to conduct the
room-temperature (77F) quasi-static triaxial compress$ests for this study. The system com-
prised an SBEL pressure vessel assembly and an MTS Systant®neframe. During testing,
the pressure vessel housed the test specimen and was ligalhagionnected to a pressure inten-
sifier capable of inducing pressures up to 55,000 psi usi@psioil (Isopar) as the pressurizing
medium. The reaction frame is equipped with a movable chessl to accommodate various
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Figure 5.3. Right circular cylinder of Castlegate sandstone jack-
eted in copper with end caps attached.

sizes of pressure vessel assemblies and is capable ofagplial loads up to 1,000,0000 pounds
through a hydraulic actuator located in the base of the frafessel pressures were measured by a
pressure transducer plumbed directly into a port machinéde vessel, whereas axial loads were
measured by a load cell inside the pressure vessel (resolitb pounds, accurate to 0.5% at full
scale [45,000 Ibf ]).

Setup of the quasi-static triaxial compression tests gdiplacing the jacketed, instrumented
specimen assembly into the pressure vessel, connectingrimentation leads to feed-throughs in
the pressure vessel, filling the vessel with oil, and mouyiire pressure vessel assembly into the
reaction frame (see Fig. 5.5). The actuator in the base didnee was then advanced gradually
raising the pressure vessel assembly into position fordbe tNo axial load was placed on the
sample prior to the test, rather, the loading piston wasrazRauntil it was very close to applying
a load. Then, initiation of the test was turned over to the TAFS test system controllers which
automatically increased the confining pressure to the cotaeget hydrostatic stress (all-around
pressure); the loading frame was in displacement contrdevilicreasing the confining pressure.
Confining pressure loading was sometimes interrupted gktneres during each test to initiate an
unload/reload cycle. The unload/reload stress-straia i@y be used to evaluate elastic moduli.

For the tests on rock, once the test system had stabilizée aatget pressure, the system was
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adial LVDT

Figure 5.4. Right circular cylinder of deformed Castlegate sand-
stone, showing the complete sample assembly with axialadidlr
LVDTs

switched to stroke control and additional axial load wadiedgo the specimen using axial strain
rate as the feedback mode. When the system was switchedatstatke control, the location
of the top of the sample had to be found by the machine. Thisasasmplished by telling the
machine to search for the sample in axial load steps of afspsi@e until the sample is found by
applying a small force/stress. During this time, the confimressure is held constant. Ultimately,
the sample is found and some time later, the test is begumdogasing axial stress at a specified
rate to arrive at a starting stress state in net path mode.ata ahalysis, there is a time pick
on start of the test. For absolute determinations of axralsst the internal force gage reading
should be re-zeroed at the test start. The strain rate apipliell tests was k 104 s~1. Axial
loading was sometimes interrupted several times durinky &t to initiate an unload/reload cycle.
Axial loading continued until either a peak axial load wasetved or the desired range of the
deformation was achieved.

For the tests on metal and ceramic, once the test systemdtaliz&td at the target pressure, the
system was switched to total axial stress control usingriteznal load cell and confining pressure
transducer. When the system was switched to total axiasstrentrol, the location of the top of
the sample had to be “found” by the machine. If a path loadvwest performed, at this point in
the test, the path loading was begun. When in net loadingtbrlpading, lateral and axial loads
were programmed and controlled separately and simultahebased on a rate to target stress
state(s). It will be shown later that sometimes the stregestvere achieved by multi-directional
axisymmetric loading.
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Figure 5.5. Testing system used to conduct quasi-static triaxial
compression tests.

We completed a total of 43 experiments on copper (2), alumjrateel, ceramic (2), Salem
Limestone, and Castlegate Sandstone (Table 5). Some ofpleements were conducted to figure
out how to best perform an experiment, some experiments eogr@ucted to search out materials
that we could test in a manner such that we could measure gieedeesponse within the load
limits of the experimental apparatus with the desired adrin force (stress) and displacement
(strain) to provide value to the analysis.

Calibration

Data collected in the experimental study included forcespure, and displacement. Typically,
these data are acquired using electronic transducers shwine electrical output is proportional to
the change in the measured variable. In all cases, the casstgoroportionality were determined
through careful calibration using standards traceabléé¢oNational Institute for Standards and
Technology.
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Table 5.1. Experiment number, test date, specimen dimensions
and confining pressure.

Confining
TestID file Date Material Diamet Length P notes
in in ksi
LP-TAO1 11/17/2006  C101 copper 0.500 1.050 5 simple triax
damaged during initial ax
LP-TAD2 11/20/2006 Porous ceramic (filter mat'l) 0.505 0.990 5 simple triax loading
LP-TAO3 12/11//2006  C101 copper 0.500 1.020 various  simple step program demo
LP-TAD4 2/21/2007 G101 pure copper 0.500 1.010 20 simple path control stress states not Z-R space
first z-r space
LP-TAOS 2/23/2007 G101 pure copper 0.500 1.050 15 control
LP-TAOE 2/26/2007  steel billet blank 1.000 2.000 14 load path z-r control
LP-TAQ7 5/17/2007  NA —Steel Billet 0.900 2.000 10 load path
LP-TAOS 5M18/2007 Macor ceramic 0.540 1.055 15 load path no sfrain data
LP-TAOS 5/22/2007  Macor ceramic 0.540 1.079 24 load path
LP-TA10 5/23/2007  Macor low porosity ceramic 0.540 1.080 22
LP-TA11 5/23/2007 G101 copper rod 0.500 1.030 15 load path attempt to define control data
LP-TA12 6/26/2007  C101 copper rod 0.500 1.010 15 load path
LP-TA13 9/21/2007  Copper bar annealed 0.998 1.971 15 load path
no
LP-TA14 11/7/2007  Porous ceramic 1.040 2.010 4565 load path 15% legs failure
6061-TO Alum bar
LP-TA15 5/M16/2008  (extruded, annealed) 15 load path 15% legs  first use of leg tags
6061-TO Alum bar
LP-TA16 5/22/2008  (extruded, annealed) 17.5 load path 15% legs
6061-TO Alum bar
LP-TA17 5/29/2008 (extruded, annealed) 1.002 1.740 215 load path 15% legs
6061-TO Alum bar
LP-TA18 6/2/2008 (extruded, annealed) 1.001 2.004 20 net path only
6061-TO Alum bar
LP-TA19 6/4/2008 (extruded, annealed) 1.002 1.901 20 load path 15% legs
6061-TO Alum bar
LP-TA20 6/26/2008  (extruded, annealed) 1.002 1.902 19.4 load path 15% legs
6061-TO Alum bar
LP-TAZ21 7/1/2008  (extruded, annealed) 1.002 1.899 206 load path 15% legs
6061-TO Alum bar
LP-TA22 9/9/2008  (extruded, annealed) 1.001 2.023 19.4 load path 50% legs
6061-TO Alum bar
LP-TA23 9/10/2008 (extruded, annealed) 1.001 2.020 18.8 load path 50% legs
6061-TO Alum bar
LP-TA24 9/10/2008  (extruded, annealed) 1.002 2.014 18.4 load path 50% legs
6061-TO Alum bar
LP-TA25 9/11/2008 (extruded, annealed) 1.002 207 19.4 net path only
SL-CDO1 212/2007 Salem limestone 1.010 2.000 13.5 Cap development
SL-CDO3 2M13/2007 Salem limestone na Cap development strain errors during hydro
SL-CD04 2M14/2007 Salem limestone Cap development
SL-CDOS 2M16/2007 Salem limestone 1.010 2.000 15 Cap development
CG-CDo2 6/18/2008 Castlegate sandstone 1.994 3.910 59 Cap development hydrostatic
CG-CD03 6/24/2008 Castlegate sandstone 1.991 3.854 10, 37 Cap development hydrostat, triax
new
sample
CG2-CDO1 8/22/2008 Castlegate sandstone 1.495 2933 5 Cap development hydrostat, triax size
CG2-CDo2 8/25/2008 Castlegate sandstone 1.496 2916 5 Cap development hydrostat, triax
CG2-CDO3 8/26/2008 Castlegate sandstone 1.496 27 50 Cap development hydrostatic
CG2-CDo4 8/27/2008 Castlegate sandstone 1.496 2.925 535 Cap development hydrostatic
CG2-CD0s 8/28/2008 Castlegate sandstone 1.494 2848 56 Cap development hydrostatic
CG2-CDoe 8/29/2008 Castlegate sandstone 1.492 2937 32 Cap development hydrostat, triax
CG2-CDO7 8/29/2008 Castlegate sandstone 1.492 2,895 30 Cap development hydrostat, triax
2 lateral
CG2-CDo8 9/3/2008 Castlegate sandstone 1.494 2919 30 Cap development hydrostat, triax gages
CG2-CD0og 9/5/2008 Castlegate sandstone 1.494 2926 24 Cap development hydrostat, triax
CGz-CD1o 9/6/2008 Castlegate sandstone 1.493 3.073 20 Cap development hydrostat, triax
CG2-CD11 9/7/2008 Castlegate sandstone 1.494 3.080 12 Cap development hydrostat, triax
Pec per
CG2-CD12 9/12/2008 Castlegate sandstone 1.494 3.000 7 Cap development hydrostat, triax Holcomb

o1
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Chapter 6

Discussion of Results

Regular Flow Rule

The first aim of this study was to develop a load path suitabteaEsessing the validity of the
classical plasticity assumption of a regular flow rule. Fmading directions were selected. We
define a stress increment by:

0,= Zcosa

Or = Zsina (6.1)

wheres is the increment magnitude amdis the angle formed between the stress increment and
the hydrostatic compression axis. The four legs labeled,A; Bnd D are described in Table (6).

Smaller increments were used in early tests, but the measuits had a low degree of repeata-
bility since the “noise” was of the same order of magnitudéhasmeasurements themselves. The
increments were progressively made larger until good tepday was attained.

As discussed previously, unloading increments were iredlugb that the elastic properties of
the material could also be calculated. The unloading inerémwere chosen to have the same
magnitude as the loading increments. This not only allowslastic tangent stiffness to be com-
puted, but also allows the plastic strain increments to bectly measured. This is done by mea-
suring the strain increment during the loading and unlogdicrements of each cycle. The strain

Table 6.1. Description of stress increments wheres the angle
formed with the hydrostatic compression axis, ang the total
increment magnitude.

Leg| a 2
A | 90° | 300 psi
B | 180° | 300 psi
C | 35 | 300 psi
D | 125 | 300 psi
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that remains after completely unloading each loading mem is the plastic strain increment for
that loading cycle.

Figs. 6.1 and 6.2 show the strain response envelopes fa dhifferent tests. These envelopes
are constructed from interpolated strain increments frioenfirst loading cycle, which is near the
initiation of yielding for each sample. A key feature of te@esponse envelopes is the orientation
of the plastic strain increments (red dots). With the exoepdf a single increment in Fig. 6.1(a),
all of the plastic strain increments lie nearly in a strailyme in the first quadrant. Similar results
were found for the other stress cycles. This means that tketdin of the plastic strain increment
is the same regardless of the loading direction, which até& a regular flow rule. This is consis-
tent with the experimental and numerical studies mentigrediously, which seems to validate
the interpolation scheme used in this study.

de, de,
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(a) Second cycle ofb) Second cycle ofc) Second cycle of
LP-TA22 LP-TA23 LP-TA24

Figure 6.1. Response envelopes for the second stress cycle of
tests LP-TA22 (a), LP-TA23 (a) and LP-TA24 (c). Black dots in
dicate total strain increments, red dots indicate plastairsincre-
ments. All strain increments have been interpolated to ancom
material state using a cyclical loading cycle. The partiypsges

are a visualization of the best fit tangent stiffness tenSdidack)
andT (gray), which were found via a pseudo-inverse method us-
ing the four stress/strain increment pairs. These ellipspesent

a circle in stress space mapped to strain space.
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Figure 6.2. Response envelopes for the third stress cycle of tests
LP-TA22 (a), LP-TA23 (b) and LP-TA24 (c). Black dots indieat
total strain increments, red dots indicate plastic stragnéments.

All strain increments have been interpolated to a commorenaht
state using a cyclical loading cycle. The partial ellipsesavi-
sualization of the best fit tangent stiffness tenso(black) andT
(gray), which were found via a pseudo-inverse method ugieg t
four stress/strain increment pairs. These ellipses reptescircle

in stress space mapped to strain space.

The plastic strain increments in the third quadrant for [d3{TA22 merit some discussion.
The increments shown in Fig. 6.1(a) and 6.2(a) are not aniemdlut were observed for every
load increment B in that test. This loading direction is oftgalar interest because for models
which use a pressure dependent yield strength and a nookatesbflow rule, this direction lies
in or near the Sandler-Rubin wedge. Some degree of presspendence in the yield strength
was observed in these tests. This means that loading inatdBrehould be directed outward from
the yield surface, but at a relatively shallow angle. Fohsaistress increment the corresponding
plastic strain increment would be expected to be small coetpto the total strain increment.
Since the plastic strain increments are small for thesarngadcrements, they are more prone to
experimental error. Nevertheless, the fact that everyihgaidcrement B exhibited this behavior is
enough to suggest that thareybe something unusual occurring for loads in this direction.
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Non-associated Flow Rule

As discussed previously, the load path used in this studydesigined in such a manner as to allow
the plastic tangent stiffness tensbrand the elastic tangent stiffness ten€oto be computed
directly from the measured stress and strain incrementssd balculations were performed using
equation (4.4). These tensors are visualized as ellipggg#1 6.1 and 6.2. These ellipses represent
a circle in stress spaa# + g2 = (300psi)?, transformed to strain space via the calculated “best
fit” stiffness tensord andC. The ellipses for the second cycle (Fig. 6.1) appear to fitddia
rather well. It is noted that the strain response envelopaldhe continuous. This means that the
ellipse formed by the plastic tangent stiffness tefisand the ellipse formed by the elastic tangent
stiffness tenso€ should intersect where the yield surface intersect théecincstress space. This

is nearly the case for the strain envelopes in Fig. 6.1. Hewekie strain envelopes for the third
cycle (Fig. 6.2) are discontinuous. This might indicate thasuch large plastic strain increment
magnitudes, more data are required to obtain a better fiafayent stiffness tensors. Alternatively,
noting that the initially nearly uniform distribution ofistulus vectors (i.e. the stress increments)
transform to a grouping of relatively clustered responseors (strain increments), it is possible
that the material is undergoing a nonlinearity in the resgovector density. An example of a
nonlinear response vector density is shown in Fig. 2.1(&haps even suggesting the formation
of an "unattainable” wedge in the response vectors. Agairthér data for a larger variety of
loading directions is needed to investigate this conjectur

Using these “best fit” tangent stiffness tensors, the dwastof the yield surface normal and
plastic strain rate directiomM were calculated using equations (4.5) through (4.9). Thalte of
these calculations are found in Table 6. The directiongl@ndN do not coincide for any of the
cases, which seems to indicate a non-associated flow ridacéa anisotropy may play a role in
creating apparent non-associativity. Despite having laesealed, it is clear that some degree of
anisotropy was inherent in the specimens used in these Tdstscan be clearly seen in tlog vs
& stress strain curves, as in Fig. 6.3. Due to the unidireatinature of the initial phase of the load
path, it is not possible to discern the amount of anisotropictwwas inherent in the sample, and
how much was induced by plastic deformation. This adds aedegf uncertainty in the results of
this aspect of the study that can be rectified by adding simessment probing to the initial elastic
legs. Due to these factors, and the limited amount of datae ingestigation would be required to
make any firm conclusions based upon these calculations.

Table 6.2.Direction of the yield surface normal and the plastic
strain rateM referenced to the hydrostatic compression axis.

Step| 6w N Step| 6v N Step| 6w 6N
2 3% | 66° 2 9 | 120 2 83 | 122
3 105 | 146 3 153 | 173 3 116’ | 163

4 | 125 | 198 4 - - 4 | 131 | 179
@) LP-TA22 (b) LP-TAZ3 () LP-TA24
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Figure 6.3. The o; vs. & stress strain curve for test LP-TA20,
illustrating the initial anisotropy in the material. Theisotropy is
evidenced by the change (decrease) in the stafturing the ini-
tial hydrostatic loading leg of the test where iyestress remains
nearly constant. This indicates that the material is uraegga
shear deformation due to a purely hydrostatic loading.

Cap Model Validation

As discussed in the Introduction, non-proportional logdeperiments were proposed to investi-
gate the validity of an existing model [6] for the evolutiohtbe cap hydrostat intersection point
(i.e., the hydrostatic elastic limit) in response to firshdong away from this point (see the cap
evolution illustrated in Fig. 4.2).

As seen in Fig. 6.4 the geomechanics theory under invegtigatcurately predicts dilatation
observed in triaxial compression (TXC), but it does so by mgthe cap outward (see Fig. 4.2).
Such behavior, which has never been validated, is coutué@nre because it implies that dilatation
(increasing void space) actually increases the materagistance to yield in hydrostatic compres-
sion. Validating this prediction requires first selectinghaterial that exhibits dilatation in TXC
so that the dilation phase can be interrupted with a changeeihoading direction to probe the
movement of the cap in response to dilatation. Standard geloamics testing typically involves
no such change in loading directions. Therefore existing theat exhibits dilatation in TXC, such
as that in Fig. 6.4 or more recent similar data for Castle§atedstone [28] is of limited value in
this validation effort other than to suggest an appropmaaéerial for testing. Given that the recent
Castlegate Sandstone tested by Holcomb and coworkersig8aged a clear dilatation “knee”, it
seemed natural to reproduce those results and extend thteramexcursion to the hydrostat. The
block of Castlegate sandstone used by Holcomb was no longdakle, so new samples from
a different block were used. Unfortunately, however, theCTdilatation behavior observed by
Holcomb was not observed in the new samples. Contrast, fimpbe, the difference in charac-
ter between Fig. 6.4, which exhibits dilatation, and theebturve in Fig. A.5, which shows no
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Model Versus Measured Volume Strain During 1raxial Compression lests on

Sidewinder Tuff
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Figure 6.4. Validation of a geomechanics model for loading
of Sidewinder Tuff under triaxial compression [27]. (Notéte
present work aims to extend validation for changes in thdifaa
direction away from standard triaxial compression loachpatf
this kind.)

dilatation.

Hydrostatic compression and triaxial compression teste werformed on several Castlegate
sandstone specimens at a variety of confining pressures.hyidrestatic compression tests re-
vealed that the hydrostatic yield strength of this matasi@pproximately 35 ksi. For the triaxial
compression tests with a confining pressure above 12 ksi #ohime capacity was reached before
reaching failure or dilatation. For tests with a confininggsure of 12 ksi or less the material did
fail, but no dilatation was observed prior to failure. Thedening models under consideration
in this study predict an increase in hydrostatic yield gitbreven in the dilatation range. Since
dilatation was never observed in the tests, no assessméne ofalidity of this aspect of these
models is possible from the data. However, the fact that tadadion was observed, along with
some unusual behavior of the lateral strain measuremeils far further investigation.
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Chapter 7

Conclusions

Systematic laboratory experiments on three metals, twk tges, and one ceramic have been
conducted to explore validity of unproven assumptions éineatcommon to virtually all plasticity
models used in production-level engineering simulatiéngarticular goal has been to resolve the
paradox that non-associativity has been experimentallyestablished for most materials (includ-
ing metals), while at the same time any form of non-assagigtadmits a physically inadmissible
dynamic instability that is equivalent to spontaneous orofrom a quiescent state. Noting that
the stress increments in standard testing are significdiftgrent from the increment that induces
instability, it was conjectured that a revision might beuiegd in engineering plasticity models that
allows the plastic tangent tensor to vary with the loadingation. Such a feature, if observed,
would correspond to a need to revise existing plasticitpties to accommodate incremental non-
linearity. Testing for this possibility required nonstand tests that aim to quantify the effect
of a variety of loading directions on the material respon&esecondary goal that also requires
changing the loading direction was to assess the meritsrdehang models for cap plasticity that
counterintuitively predict that volumetric expansionrfrarack growth in shear causes hydrostatic
strengthening.

For tractability, the laboratory experiments were limiteédxisymmetric loading, and changes
in loading direction were achieved through independentrobof axial and lateral components of
stress. A cyclic path through stress space was applied, ax@has to interpolate between repeated
pairs of stimulus-response vectors to any desired poimigatloe loading path was developed. The
result of this data analysis was information about mateegponse to stress increments in eight
possible directions. The response vectors were visualiged) Gudehus strain response diagrams,
which simply join the strain increment vectors at theirdab that the tips of these vectors form a
closed curve. If the assumption of incremental linearigt ik used in classical plasticity theory is
correct, then the Gudehus diagram for total strain increseril be an ellipse in elastic loading
and the continuous union of two ellipses in elastic-plastazling. This was generally observed
in the data, and mathematical formulas were provided toopmrfa least-squares fit to the data
to determine the tangent modulus for a classical plastitibgel to minimize error in general
loading. The residual from such a calculation serves as atijatve metric of the approximation
error associated with using classical models.

Since the experiments included both loading and unloadigs, the data were further reduced
to decompose the strain increment response vector intticetasd plastic parts, which enabled
investigation of the assumption of a regular flow rule. Thig presumes that only the magnitude
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of the plastic strain increment is affected by the totalistiecrement vector, whereas the direction
of the plastic strain increment is fixed. In a Gudehus pla,rdgular flow rule therefore predicts
that the plastic strain increment vectors must point in gleidirection. This general behavior was
observed overall, but in some of the tests, the loading merd that was closest to the theoretical
direction for instability deviated from this direction. ler experiments are needed to confirm the
unusual behavior in this loading direction. If this phenome is real, then it would preclude the
theoretical instability of classical plasticity theoriesd revisions of these theories would require
introduction of an additional zone of loading with a thiraxgg@nt tensor, distinct from the conven-
tional plastic and elastic tangent tensors. There arenaltiee interpretations of the observations
in these tests (such as introduction of a backstrain) thght@qually well predict such behavior.
Moreover, as discussed above, some degree of transvessgrapy was observed in the results,
which could also cause behavior that would be missed byopimttheories. The material behavior
observed in the axisymmetric testing of this research wasistent with several DEM simulations
[12] under similar conditions, which suggests that therpéation scheme used in our study is
reasonable and also suggests that the trends observed iEtflestudies are suggestive of real
material behavior. As such, it should be noted that the DEMist explored a much wider range
of loading directions, some of which exhibited severe dewis from classical plasticity theory.
Therefore further testing is recommended.

As is clear from the numerous test results in the Appendixgrgel number of experiments
were conducted. Of these, however, only a few gave data that suitable for analysis of plastic
flow behavior. The majority of tests served to develop thertgsnethodology and material selec-
tion. For this reason, our investigation of the validity ¢dgticity assumptions should be regarded
as incomplete but meriting followup testing using the neehteques developed in this research
effort.

Although the data are not yet conclusive, the potentialfealidation of incremental plasticity,
together with noticeable induced anisotropy, casts sefitmubt on the predictiveness of classical
nonassociative plasticity models at Sandia (and elseyh@entrolled validation data are rarely
available to the constitutive modeler. This research cgorawe theories for extrapolating from
limited calibration data to the still large set of unexphlbieading trajectories typical in engi-
neering applications. Any engineering simulation invotynon-monotonic stress increments will
probably significantly benefit from investment in develomptr@f incrementally nonlinear plasticity
theories, as well as induced anisotropy. To

prioritize new experimental and theoretical efforts insthirea, it is recommended that the
loading paths that materials undergo in engineering sitioms be monitored so that those loading
paths receive highest priority in testing.
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Appendix A

Summary of Tests

A.1 Cap Model Validation Tests

A.1l.1 CG-CDO02

This test was a purely hydrostatic test. The maximum presatiained in this test was approx-
imately 60 ksi, with resulting maximum volumetric strain aproximately 10%. The material
appeared to yield at approximately 40 ksi pressure=£69ksi) and 4.5% volumetric strain as
shown if Fig. (A.1).

Pressure
000

000
000
000
000

000

0.02 0.04 0.06 0.08 0.10

Figure A.1. Hydrostatic compression curve for CG-CD02,
represents the volumetric strain.
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A.1l.2 CG-CDO03

This test was an attempt at load path three (triaxial consppasintil midway between the critical
point and failure point, then return to hydrostatic loadinthe sample was subjected to hydrostatic
loading to 10 ksi, then underwent triaxial compressionluhé stress deviator reached 9591 ksi.
The load was then ramped down to the hydrostatic axis andhktatic loading continued until the
pressure was approximately 37 ksi. The lateral strain gaggewery erratic, resulting in strange
discontinuous stress/strain curves.

A.1.3 CG2-CDO03

This test was a purely hydrostatic test. The material agoktr yield at approximately 35 ksi as
shown in the plot below. Near the end of the test the laterairsgage failed resulting in the sharp
“spike” in the stress/strain curves.

CG2-CDO0D3 Hydro

60000

50000

40000

30000

g

pressure {(psi)

20000

10000

Figure A.2. Stress/strain curves for test CG2-CD03.
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A.1.4 CG2-CD04

This test was also a hydrostatic test, however, the reselts quite different from CG2-CD03.

A.1l.5 CG2-CDO05

This test appears was identical to CG2-CDO04. This seemgjesti that these two test agree, and
that there is a problem with CG2-CDO03.

A.l1l.6 CG2-CDO06

This test was a triaxial compression test with a confiningsguee of 32 ksi. The lateral strain
measurement appeared to be very unusual as shown in Fig. #8.load cell capacity was
reached before the material failed. No dilatation was olexbin this test.

A.l.7 CG2-CDO7

Due to the strange lateral strain measurement in CG2-Chefest was repeated with a confining
pressure of 30 ksi. Similar results were observed. As wigh@2-CDO07, the load cell reached
its limit before the material failed.

A.1.8 CG2-CDO09

In a attempt to fail the material the confining pressure wathér reduced to 24 ksi. Material
failure was still not attained before the load cell capawigs reached. However, the strain mea-
surements were trending in the expected directions.

A.19 CG2-CD10

The confining pressure was further reduced to 20 ksi withltesimilar to CG2-CD09. Various
strain measurements are shown plotted versus axial str&$g.iA.4.

A.1.10 CG2-CD11

The confining pressure was further reduced to 12 ksi and rabtaiture was attained. However,
a critical point (onset of dilatation) was not observed. idas strain measurements are plotted
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Figure A.3. Lateral strain measurement vs. differential stress
from test CG2-CD06. Note that during the hydrostatic leg the
lateral strain first increases, then decreases, then sesezgain
while there is not change in loading direction. This resakras
very unusual.

versus axial stress in Fig. A.5.

A.1.11 G2-CD12

The confining pressure was further reduced to 7 ksi, and agaterial failure was attained.

with CG2-CD11 no critical point was observed.
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Figure A.4. Various strain measurements vs. axial stress for test
CG2-CD10. Red curve is the axial strain, blue is the voluimetr
strain, and the green is the lateral strain.
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Figure A.5. Various strain measurements vs. axial stress for test
CG2-CD11. Red curve is the axial strain, blue is the voluimetr
strain, and the green is the lateral strain.
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A.2 Flow Rule Validation Tests

A.21 LP-TA18

This test was a calibration test. The sample was hydroathticompressed to 20 ksi, then loaded
through a triaxial path with net; /o, angle of 110 degrees. This test was used to determine the
yield strength of the material. This helped to determinenehe begin the loading profile for latter
tests. Summary plots for this test may be found in Figs. A.@, And A.8.
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Figure A.6. The loading path for test LP-TA18 in r-z stress space
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Figure A.7. Thea;/¢, stress strain plot for test LP-TA18.
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Figure A.8. The g//¢, stress strain plot for test LP-TA18.
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A.2.2 LP-TA19

This test used the same net path as LP-TA18. When the striésiedce reached 3500 psi the
zig-zag load path was initiated. This load path was continuil the material failed. One of the
three axial strain gages was not in good agreement with ther 6tvo. The lateral gage readings
appeared to be good. This data included tags that indicateebinning and end of each leg and
step in the loading path. These tags are used to extract¢hemental vectors from the data. The
unloading increments used in this test were too small tanalleeful data to be subtracted. Fig.
A.12 is a plot of shear stress versus shear strain for testBAIB and LP-TA19. The plot seems
to indicate work-hardening in sample LP-TA19. Summary$fot this test may be found in Figs.
A.9,A10,and A.11.
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Figure A.9. The loading path for test LP-TA19 in r-z stress space
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Figure A.10. The g;/¢; stress strain plot for test LP-TA19.
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Figure A.11. The g,/¢; stress strain plot for test LP-TA19.

(o

i

5000

4000

3000

2000

1000

N €r

0.05 0.10 0.15

Figure A.12. Equivalent shear stregs versus equivalent shear
straing; for test LP-TA18 (blue) and LP-TA19 (red).
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A.2.3 LP-TA20

This data was similar to LP-TA19, except is was performedaivar confining pressure. This data
did not include tags indicating the beginning and end of teps For this reason the incremental
vectors were not extracted from the data. Summary plotfsrtést may be found in Figs. A.13,

A.14, and A.15.
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Figure A.13. The loading path for test LP-TA20 in r-z stress
space

Figure A.14. The g;/¢; stress strain plot for test LP-TAZ20.
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Figure A.15. The g,/¢, stress strain plot for test LP-TA20.
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A.2.4 LP-TA21

This data was similar to LP-TA19, except it was performed kiveer confining pressure. This
data did include the leg and step tags. However, the unlgadarements for this test were also
too small to allow useful data to be extracted. Summary gtotshis test may be found in Figs.
A.16,A.17,and A.18.
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Figure A.16. The loading path for test LP-TA21 in r-z stress
space
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Figure A.17. The g;/¢; stress strain plot for test LP-TA21.
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Figure A.18. The g,/¢; stress strain plot for test LP-TA21.
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A.25 LP-TA22

The loading profile was changed for this dataset. The loadicrgments were increased from 230
psi in magnitude to 300 psi. The loading increments wereamts be the same magnitude as the
loading increments, but with opposite direction. This nsetnrat each loading increment is fully
unloaded, the reloaded. This allows useful informationd@ktracted from both the loading and
unloading increments. Also, since the loading legs arg fullloaded, the plastic strain can be
directly measured by measuring the strain that remains @fleading each stress increment. This
proved to be very useful. Summary plots for this test may b@dan Figs. A.19, A.20, and A.21.
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Figure A.19. The loading path for test LP-TA22 in r-z stress
space
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Figure A.20. The g;/¢; stress strain plot for test LP-TA22.
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Figure A.21. The g,/g; stress strain plot for test LP-TA22.
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Figure A.22. Strain response envelope for the second loading
cycle for test LP-TA22.
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Figure A.23. Strain response envelope for the third loading cycle
for test LP-TA22.
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Figure A.24. Strain response envelope for the fourth loading
cycle for test LP-TA22.
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Figure A.25. Strain response envelope for the fifth loading cycle
for test LP-TA22.
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A.2.6 LP-TA23

This test was similar to LP-TA23, only at a slightly lower gseire. Summary plots for this test
may be found in Figs. A.26, A.27, and A.28.
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Figure A.26. The loading path for test LP-TA23 in r-z stress
space
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Figure A.27. The g/ stress strain plot for test LP-TA23.

83



Oz

3250k !
3200CF .
3150CF
3100

i t,

3050CH
3000Cf ,’
§

{

P

€

2950Ck

L Il L L L L L L
0.08 0.10 0.1

Figure A.28. The g,/¢, stress strain plot for test LP-TA23.
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Figure A.29. Strain response envelope for the second loading
cycle for test LP-TA23.
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Figure A.30. Strain response envelope for the third loading cycle
for test LP-TA23.
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Figure A.31. Strain response envelope for the fourth loading
cycle for test LP-TA23.
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A.2.7 LP-TA24

This test was similar to LP-TA23, but performed at a slighdhywer pressure. Summary plots for
this test may be found in Figs. A.32, A.33, and A.34.
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Figure A.32. The loading path for test LP-TA24 in r-z stress
space
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Figure A.33. The g;/¢; stress strain plot for test LP-TA24.
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Figure A.34. The g,/¢; stress strain plot for test LP-TA24.
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Figure A.35. Strain response envelope for the second loading
cycle for test LP-TA24.
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Figure A.36. Strain response envelope for the third loading cycle
for test LP-TA24.
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Figure A.37. Strain response envelope for the fourth loading
cycle for test LP-TA24.
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A.2.8 LP-TA25

This test followed the same net load path as LP-TA22, but dicchange loading direction. This
test was included for comparison with the load paths witmgea in loading direction. Summary
plots for this test may be found in Figs. A.38, A.39, and A.40.
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Figure A.38. The loading path for test LP-TA25 in r-z stress
space

Figure A.39. The g;/g; stress strain plot for test LP-TA25.
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Figure A.40. The g,/¢, stress strain plot for test LP-TA25.
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A.29 LP-TA26

This test used an initial confining pressure of 10 ksi, and folowed the net loading path with
no changes in the loading direction. Summary plots for gss tnay be found in Figs. A.41, A.42,
and A.43.
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Figure A.41. The loading path for test LP-TA26 in r-z stress
space
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Figure A.42. The g,/ stress strain plot for test LP-TA26.
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Figure A.43. The a,/g; stress strain plot for test LP-TA26.
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A.2.10 LP-TA27

This test used an initial confining pressure of 10 ksi, thexduken loaded to just below the yield
point, and began applying loading increments in severactions. The loading and unloading

increments both had a magnitude of 300 psi. Summary plotthfertest may be found in Figs.
A.44 through A.49 .
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Figure A.44. The loading path for test LP-TA27 in r-z stress
space
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Figure A.45. The g;/g; stress strain plot for test LP-TA27.
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Figure A.46. The g,/¢; stress strain plot for test LP-TA27.
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Figure A.47. Strain response envelope for the second loading
cycle for test LP-TA27.
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Figure A.48. Strain response envelope for the third loading cycle
for test LP-TA27.
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Figure A.49. Strain response envelope for the fourth loading
cycle for test LP-TA27.
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A.2.11 CD2-LP02

This test was performed using a sample of Castlegate sarejsand used an initial confining
pressure of 20 ksi. It then followed a loading path with@ho, angle of 110 degrees until the
sample failed. This test was used do find the yield point ferwgh test CG2-LP03. Summary
plots are shown in Figs. A.50 through A.52.
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Figure A.50. The loading path used for test CG2-LP02
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Figure A.51. Stress @;) vs. strain £ ) plot for test CG2-LP02
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Figure A.52. Stress @) vs. strain €,) plot for test CG2-LP02
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A.2.12 CG2-LP0O3

This test followed the same net path as CG2-LP02, but begplyiag loading increments in
multiple directions just before the yield limit was reach&lmmary plots are found in Figs. A.53
through A.65.
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Figure A.53. The loading path used for test CG2-LP03
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Figure A.54. Stress @;) vs. strain £ plot for test CG2-LP03
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Figure A.55. Stress @) vs. strain €,) plot for test CG2-LP03
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Figure A.56. Strain response envelope for the second loading
cycle of test CG2-LP03.
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Figure A.57. Strain response envelope for the third loading cycle
of test CG2-LPO03.
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Figure A.58. Strain response envelope for the fourth loading
cycle of test CG2-LP03.
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Figure A.59. Strain response envelope for the fifth loading cycle
of test CG2-LP03.
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Figure A.60. Strain response envelope for the sixth loading cycle

of test CG2-LPO03.

&
0.000%1

0.000E}
OQO]:

-

-0.000: -0.000z —080]

~0.0001}
@

—-0.000z-

—-0.000c-

Figure A.61. Strain response
cycle of test CG2-LP03.
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Figure A.62. Strain response envelope for the eighth loading
cycle of test CG2-LP03.
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Figure A.63. Strain response envelope for the ninth loading cycle
of test CG2-LP03.
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Figure A.64. Strain response envelope for the tenth loading cycle
of test CG2-LP03.
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Figure A.65. Strain response envelope for the eleventh loading
cycle of test CG2-LP03.
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